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1. Introduction

Duality rotations for massless spin 2 fields have recently been shown to be symmetries of

the action in the context of a Hamiltonian formulation involving suitable potentials that

arise when solving the constraints [1]. This symmetry can be extended to higher spin

fields [2] and also to the case of spin 2 fields propagating on an (A)dS background [3, 4],

but does not survive gravitational self-interactions [5].

The spin 2 result generalizes the so-called double potential formalism for spin 1 fields [6,

7], which has been extended so as to include couplings to dynamical dyons by using Dirac

strings [8, 9]. In the original double potential formalism, Gauss’s constraint is solved in

terms of new transverse vector potentials for the electric field so that electromagnetism

is effectively formulated on a reduced phase space with all gauge invariance eliminated.

Alternatively, one may choose [10] to double the gauge redundancy of standard electro-

magnetism by using a description with independent vector and longitudinal potentials for

the magnetic and electric fields and 2 scalar potentials that appear as Lagrange multipliers

for the electric and magnetic Gauss constraints. In this framework, the string-singularity

of the solution describing a static dyon is resolved into a Coulomb-like solution. Further-

more, magnetic charge no longer appears as a topological conservation law but as a surface

charge on a par with electric charge.

The aim of the present work is to apply the same strategy to the spin 2 case. Doubling

the gauge invariance by keeping all degrees of freedom of symmetric tensors now leads to a

second copy of linearized lapse and shifts as Lagrange multipliers for the new magnetic con-

straints. As a consequence, the string singularity of the gravitational dyon, the linearized

Taub-NUT solution is resolved and becomes Coulomb-like exactly as the purely electric

linearized Schwarzschild solution. Furthermore, as required by manifest duality, magnetic

mass, momentum and Lorentz charges also appear as surface integrals.

Our work thus presents a manifestly duality invariant alternative to [11] where the

coupling of spin 2 fields to conserved electric and magnetic sources has been achieved in a

manifestly Poincaré invariant way through the introduction of Dirac strings.

Recent and not so recent related work includes for instance [12 – 24] and references

therein.

In section 2, we briefly recall the two ingredients needed for our formulation: the

Hamiltonian description of spin 2 fields propagating on Minkowski spacetime and the de-

composition of symmetric tensors into their irreducible components, giving rise to the

reduced phase space description of linearized gravity.

Our analysis starts in section 3 with a degree of freedom count that shows that the

phase space of duality invariant spin 2 fields with doubled gauge invariance can be taken

to consist of 2 symmetric tensors, 2 vectors and 2 scalars in 3 dimensions. We then define

the metric, extrinsic curvature and their duals in terms of the phase space variables and

propose our duality invariant action principle with enhanced gauge invariance. We proceed

by identifying the canonically conjugate pairs and discuss the gauge structure, Hamiltonian

and duality generators of the theory. In the absence of sources, we then show how the
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generators for global Poincaré transformations of Pauli-Fierz theory, reviewed in detail in

appendix A, can be extended to the duality invariant theory.

The coupling to external electric and magnetic sources is discussed in section 4. The

equations of motion are first solved in the simplest case of a point-particle dyon sitting

at the origin. They are Coulomb-like without string singularities. By identifying the

Riemann tensor in terms of the canonical variables and computing it for this case, we show

in appendix B that this solution indeed describes the linearized Taub-NUT solution.

In section 5 we discuss the surface charges of the theory and show that they include

electric and magnetic energy-momentum and angular momentum. Because of the non-

locality of the Poisson structure, we proceed indirectly and show that the expressions

obtained by generalizing the surface charges of Pauli-Fierz theory in a duality invariant way

fulfill the standard properties. Finally, we investigate how the surface charges transform

under a global Poincaré transformation of the sources.

2. Preliminaries

2.1 Canonical formulation of Pauli-Fierz theory

The Hamiltonian formulation of general relativity linearized around flat spacetime is

SPF[hmn, π
mn, nm, n] =

∫
dt

[ ∫
d3x

(
πmnḣmn − nmHm − nH

)
−HPF

]
, (2.1)

with

HPF[hmn, π
mn] =

∫
d3x

(
πmnπmn −

1

2
π2 +

1

4
∂rhmn∂rhmn −

−1

2
∂mh

mn∂rhrn +
1

2
∂mh∂nhmn −

1

4
∂mh∂mh

)
, (2.2)

and

Hm = −2∂nπmn, H⊥ = ∆h− ∂m∂nhmn. (2.3)

Here, indices are lowered and raised with the flat space metric δmn and its inverse, h = hm
m,

π = πm
m and ∆ = ∂m∂

m is the Laplacian in flat space. The linearized 4 metric is

reconstructed using h00 = −2n and h0i = ni.

2.2 Decomposition of symmetric rank two tensors

Symmetric rank two tensors φmn decompose as [25, 26]

φmn = φTT
mn + φT

mn + φL
mn, (2.4)

φL
mn = ∂mψn + ∂nψm, (2.5)

φT
mn =

1

2
(δmn∆− ∂m∂n)ψT . (2.6)

Here φTT
mn is the transverse-traceless part, containing two independent components. The

tensor φT
mn contains the trace of the transverse part of φmn and only one independent
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component. The last three components are the longitudinal part contained in φL
mn. In terms

of the original tensor φmn the potentials for the longitudinal part and the trace are given by

ψm = ∆−1

(
∂nφmn −

1

2
∆−1∂m∂

k∂lφkl

)
, (2.7)

ψT = ∆−1
(
φ−∆−1∂m∂nφmn

)
, (2.8)

while the transverse-traceless part is then defined as the remainder,

φTT
mn = φmn − φT

mn − φL
mn. (2.9)

This implies

∆2φTT
mn =∆2φmn −∆∂m∂

kφkn −∆∂n∂
kφkm

− 1

2
∆(δmn∆− ∂m∂n)φ+

1

2
(δmn∆ + ∂m∂n)∂k∂lφkl, (2.10)

∫
d3xφmn∆2φTT

mn =

∫
d3x

(
∆φmn∆φmn + 2∂mφ

mn∆∂kφkn −
1

2
(∆φ)2

+ ∂m∂nφ
mn∆φ+

1

2
∂m∂nφ

mn∂k∂lφ
kl

)
. (2.11)

Alternatively, one can introduce the local operator PTT

(
PTTφ

)
mn

=
1

2

[
ǫmpq∂

p(∆φq
n − ∂n∂rφ

qr) + ǫnpq∂
p(∆φq

m − ∂m∂rφ
qr)

]
, (2.12)

which projects out the longitudinal and trace parts and onto a transverse-traceless tensor,

(
PTTφ

)
mn

= PTT
(
φTT

)
mn

=
(
PTTφ

)TT

mn
. (2.13)

In addition,

(
PTT (PTTφ)

)
mn

= −∆3φTT
mn. (2.14)

As a consequence, the transverse-traceless tensor φTT
mn can be written as PTT acting on a

suitable potential ψTT
mn,

φTT
mn =

(
PTTψTT

)
mn

, ψTT
mn = −∆−3

(
PTTφ

)
mn

. (2.15)

The operator PTT is related to the way the Hamiltonian constraint H = 0 is solved by

expressing the metric hmn in terms of superpotentials in [1]. When acting on a transverse-

traceless tensor, the two terms of (2.12) involving ∂rφ
qr can be dropped. In this case, PTT

is related to the generalized curl [2, 5],

(Oφ)mn =
1

2
(ǫmpq∂

pφq
n + ǫnpq∂

pφq
m), (2.16)

(
PTTφTT

)
mn

= ∆
(
OφTT

)
mn

. (2.17)
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A second operator that projects out the longitudinal and trace parts and onto a transverse-

traceless tensor is QTT ,

(
QTTφ

)
mn

= ǫmpqǫnrs∂
p∂r∆φqs − 1

2
(δmn∆− ∂m∂n)(∆φ− ∂p∂rφpr). (2.18)

In this case,

(
QTT (QTTφ)

)
mn

= ∆4φTT
mn, (2.19)

so that the transverse-traceless tensor φTT
mn can be written as QTT acting on another po-

tential χTT
mn,

φTT
mn =

(
QTTχTT

)
mn

, χTT
mn = ∆−4

(
QTTφ

)
mn

. (2.20)

In turn this operator is related to the way the constraints Hm = 0 are solved by expressing

the momenta πmn in terms of superpotentials in [1]. When acting on a transverse-traceless

tensor, the last term can again be dropped and it is related to the square of the general-

ized curl,

(
QTTφTT

)
mn

= ∆
(
O(OφTT )

)
mn

= −∆2φTT
mn. (2.21)

The elements of the decomposition are orthogonal under integration if boundary terms

can be neglected,

∫
d3xφmnϕmn =

∫
d3x

(
φTTmnϕTT

mn + φLmnϕL
mn + φTmnϕT

mn

)
. (2.22)

and the operators PTT ,QTT ,O are self-ajoint, e.g.,

∫
d3x

(
PTTφ

)mn
ϕmn =

∫
d3xφmn

(
PTTϕ

)
mn

. (2.23)

2.3 Reduced phase space for linearized gravity

For completeness, let us briefly recall [25] the reduced phase space associated with the

Pauli-Fierz action. Because of the orthogonality of the decomposition, the canonically

conjugate pairs can be directly read off from the kinetic term and are given by

(
hTT

mn(x), πkl
TT (~y)

)
,

(
hL

mn(~x), πkl
L (y)

)
,

(
hT

mn(x), πkl
T (y)

)
. (2.24)

The first class constraints Hm = 0 = H are equivalent to πkl
L = 0 = hT

mn. They can be gauge

fixed through the conditions hL
mn = 0 = πkl

T . The reduced theory only depends on 2 degrees

of freedom (per spacetime point), the transverse-traceless components (hTT
mn(~x), πkl

TT (y))

and the reduced Hamiltonian simplifies to

HR =

∫
d3x

(
πmn

TT π
TT
mn +

1

4
∂rh

TT
mn∂

rhmn
TT

)
. (2.25)
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3. Action and symmetries

3.1 Degree of freedom count

In order to be able to couple to sources of both electric and magnetic type in a duality

invariant way, we want to keep all components and double the gauge invariance of the

theory. With 2 degrees of freedom, # dof = 2, and 8 first class constraints, # fcc = 8, we

thus need 10 canonical pairs, # cp = 10, according to the degree of freedom count [27]

2 ∗ (# cp) = 2 ∗ (# dof) + 2 ∗ (# fcc). (3.1)

This can be done by taking 2 symmetric tensors, 2 vectors and 2 scalars as fundamental

canonical variables,

zA = (Ha
mn, A

a
m, C

a). (3.2)

3.2 Change of variables and duality rotations

For a = 1, 2, consider ha
mn = (hmn, h

D
mn) and πmn

a = (πmn
D , πmn) and the definitions

ha
mn =ǫmpq∂

pHaq
n + ǫnpq∂

pHaq
m + ∂mA

a
n + ∂nA

a
m +

1

2
(δmn∆− ∂m∂n)Ca

=2∆−1
(
PTTHa

)
mn

+ ∂m

(
∆−1ǫnpq∂

p∂rH
aqr +Aa

n

)

+ ∂n

(
∆−1ǫmpq∂

p∂rH
aqr +Aa

m

)
+

1

2
(δmn∆− ∂m∂n)Ca, (3.3)

πa
mn =ǫmpqǫnrs∂

p∂rHaqs − ∂m∂
rHa

rn − ∂n∂
rHa

rm − (δmn∆− ∂m∂n)Ha + δmn∂
k∂lHa

kl

=∆−1
(
QTTHa

)
mn
− ∂m∂

rHa
rn − ∂n∂

rHa
rm −

1

2
(δmn∆− ∂m∂n)Ha

+
1

2
∆−1(δmn∆ + ∂m∂n)∂p∂rHa

pr

=−∆Ha
mn. (3.4)

The relations for hmn[H1, A1, C1] and πmn[H2] are the local change of coordinates from the

standard canonical variables of linearized gravity to the new variables. They are invertible

and, as usual, the inverse is not local. The relations for h2
mn = hD

mn, πmn
1 = πmn

D serve to

denote convenient combinations of the new variables in terms of which expressions below

will simplify. As indicated by the notation, the infinitesimal duality rotations among the

fundamental variables are

δDH
a
mn = ǫabHbmn, δDA

a
m = ǫabAbm, δDC

a = ǫabCb. (3.5)

Here, ǫab is skew-symmetric with ǫ12 = 1 and indices are lowered and raised with δab

and its inverse. Duality invariance will be manifest if all the internal indices a are con-

tracted with the invariant tensors δab, ǫab. Since ha
mn, π

mn
a are linear combinations of the

fundamental variables, they are rotated in exactly the same way. We can thus consider

h2
mn = hD

mn, πmn
1 = πmn

D as the dual spatial metric and the dual extrinsic curvature in the

linearized theory.

– 6 –
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3.3 Action principle and locality

The duality invariant local action principe that we propose is of the form

SG[zA, uα] =

∫
d4x (aA[z]żA − uαγα[z])−

∫
dtH[z], (3.6)

where uα denote the 8 Lagrange multipliers and γα the constraints.

Let us stress here that we use the assumption that the flat space Laplacian ∆ is in-

vertible in order to show equivalence with the usual Hamiltonian or covariant formulation

of Pauli-Fierz theory and also to disentangle the canonical structure. The action princi-

ple (3.6) itself and the associated equations of motion will be local both in space and in

time independently of this assumption. The theory itself is not local as a Hamiltonian

gauge theory (see e.g. [28], section 12) because the Poisson brackets among the canonical

variables will not be local.

3.4 Canonical structure

The explicit expression for the kinetic term is

aAż
A = ǫabH

amn

((
PTT Ḣb

)
mn

+ ∂m∆Ȧb
n + ∂n∆Ȧb

m +

+
1

2
(δmn∆− ∂m∂n)∆Ċb

)
. (3.7)

The canonically conjugate pairs are identified by writing the integrated kinetic term as

∫
d4x aAż

A =

∫
d4x

(
− 2∆

(
OH2

TT

)mn
Ḣ1TT

mn + 2∆∂mH
2mn
L Ȧ1

n

− 2∆∂mḢ
1mn
L A2

n −
1

2
∆(∆H2

T − ∂p∂qH
2pq
T )Ċ1 +

1

2
∆(∆H1

T − ∂p∂qH
1pq
T )Ċ2

)
. (3.8)

This means that the usual canonical pairs of linearized gravity can be choosen in terms of

the new variables as

(
H1TT

mn (x), −2∆
(
OH2

TT

)kl
(y)

)
,

(
C1(x), −1

2
∆(∆H2

T − ∂p∂qH
2pq
T ) (y)

)
,

(
A1

m(x), 2∆∂rH
2rn
L (y)

)
, (3.9)

The 4 additional canonical pairs are

(
A2

m(x), −2∆∂rH
1rn
L (y)

)
,

(
C2(x),

1

2
∆(∆H1

T − ∂p∂qH
1pq
T )(y)

)
. (3.10)

In particular, it follows that

{ha
mn(x), πbkl(y)} = ǫab 1

2
(δk

mδ
l
n + δk

mδ
l
n)δ(3)(x, y). (3.11)

– 7 –
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3.5 Gauge structure

The constraints γα ≡ (Ham,Ha⊥) are choosen as

Ham = −2ǫab∂
nπb

mn = 2ǫab∆∂
nHb

mn, (3.12)

Ha⊥ = ∆ha − ∂m∂nh
mn
a = ∆2Ca. (3.13)

They are first class and abelian

{γα, γβ} = 0. (3.14)

The constraints H1m,H1⊥ are those of the standard Hamiltonian formulation of Pauli-Fierz

theory expressed in terms of the new variables. The new constraints γN
∆ = 0 are

H2m = 0 = H2⊥. (3.15)

They are equivalent to ∂rH1
rm = 0 = C2 and are gauge fixed through the conditions

A2
m = 0 = H1T

mn. This does not affect π2kl, while h1
mn is changed by a gauge transformation.

The partially gauge fixed theory corresponds to the usual Pauli-Fierz theory in Hamiltonian

form as described in section 2.1.

More precisely, the observables of a Hamiltonian field theory with constraints are

defined as equivalence classes of functionals that have weakly vanishing Dirac brackets

with the constraints and where two functionals are considered as equivalent if they agree

on the surface defined by the constraints (see e.g. [28]). The new constraints together with

the gauge fixing conditions form second class constraints. The Dirac bracket algebra of

observables of this (partially) gauge fixed formulation is isomorphic to the Poisson bracket

algebra of observables of the extended formulation on the one hand, and to the Poisson

bracket algebra of observables of Pauli-Fierz theory on the other hand.

In the same way, the original constraints H1m = 0 = H1⊥ are equivalent to ∂rH2
rm =

0 = C1 and are gauge fixed through A2
m = 0 = H2T

mn, leading to the completely reduced

theory in terms of the 2 transverse-traceless physical degrees of freedom.

If εα = (ξam, ξa⊥) collectively denote the gauge parameters, the gauge symmetries are

canonically generated by the smeared constraints,

δεz
A = {zA,Γ[ε]}, Γ[ε] =

∫
d3x γαǫ

α, (3.16)

so that

δεH
a
mn = −∆−1ǫab(δmn∆− ∂m∂n)ξ⊥b , δεA

a
m = ξa

m, δξC
a = 0, (3.17)

which implies in particular

δεh
a
mn = ∂mξ

a
n + ∂nξ

a
m, δεπ

a
mn = ǫab(δmn∆− ∂m∂n)ξ⊥b . (3.18)

Note that a way to get local gauge transformations for the fundamental variables is

to multiply the constraints by ∆, which is allowed when the flat space Laplacian is in-

vertible. This amounts to introducing suitable potentials for the gauge parameters and

Lagrange multipliers.

– 8 –
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3.6 Duality generator

The canonical generator for the infinitesimal duality rotations (3.5) is

D =

∫
d3x

(
− (PTTHa)mnH

mn
a + 2∆∂rH

rm
a Aa

m

− 1

2
∆(∆Ha − ∂m∂nHa

mn)Ca

)

≈ −
∫
d3xPTT (Ha)mnH

mn
a . (3.19)

The duality generator is only weakly gauge invariant,

{Ham,D} = ǫabHb
m {Ha⊥,D} = ǫabHb

⊥. (3.20)

On the constraint surface, it coincides with the generator found in [1] up to normalisation,

where it has been cast in the form of a Chern-Simons term.

3.7 Hamiltonian

In terms of the new variables (3.3)–(3.4), the Pauli-Fierz Hamiltonian reads

HPF =

∫
d3x

(
Hamn∆2HTT

amn − 2∆∂rH2
rn∂sH

2sn −

−∂r∂sH2
rs∆H

2 − 1

2
(∂r∂sH2

rs)
2 +

1

8
∆C1∆2C1

)
, (3.21)

where one can use (2.10) to expand the first term as a local functional of Ha
mn.

The local Hamiltonian H =
∫
d3xh of the manifestly duality invariant action princi-

ple (3.6) is

H =

∫
d3x

(
Hamn∆2HTT

amn − 2∆∂rHa
rn∂sH

sn
a −

− ∂r∂sHa
rs∆Ha −

1

2
∂r∂sHa

rs∂k∂lH
kl
a +

1

8
∆Ca∆2Ca

)

=

∫
d3x

(
∆Ha

mn∆Hmn
a − 1

2
∆Ha∆Ha +

1

8
∆Ca∆2Ca

)
. (3.22)

It is equivalent to the Pauli-Fierz Hamiltonian since it reduces to the latter when the addi-

tional constraints ∂rH1
rm = 0 = C2 hold. Note that the terms proportional to ∂rHa

rm and

Ca may be dropped since they vanish on the constraint surface, H ≈
∫
d3xHamn∆2HTT

amn.

The Hamiltonian is gauge invariant on the constraint surface,

{H,Γ[ξ]} =

∫
d3xHa

m∂
mξ⊥a . (3.23)

In order for the action (3.6) to be gauge invariant, it follows from (3.23) that the

Lagrange multipliers uα need to transform as

δξu
am = ξ̇am − ∂mξa⊥, δξu

a⊥ = ξ̇a⊥. (3.24)
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3.8 Poincaré generators

Consider now a symmetry generator of Pauli-Fierz theory. It is defined by an observable

K[h1, π2] whose representative is weakly conserved in time,

∂

∂t
K + {K,HPF} ≈ 0. (3.25)

Since the new Hamiltonian differs from the Pauli-Fierz one by terms proportional to the

new constraints γN
∆ = 0 given explicitly in (3.15), we have

H = HPF +

∫
d3x γN

∆k
∆. (3.26)

Furthermore, since K, when expressed in terms of the new variables, does not depend on

H2
L,H

1
T , so that {K,

∫
d3x γN

∆ k
∆} ≈ 0 in the extended theory, it follows that K is also

weakly conserved and thus a symmetry generator of the extended theory,

∂

∂t
K + {K,H} ≈ 0. (3.27)

Consider then the Poincaré generators QG(ω, a) of Pauli-Fierz theory as described in

appendix A. When expressed in terms of the new variables, they are representatives for

the Poincaré generators of the extended theory. Indeed, we just have shown that they are

symmetry generators, while we have argued in section 3.5 that their Poisson algebra is

isomorphic when restricted to their respective constraint surfaces.

Since symmetry generators form a Lie algebra with respect to the Poisson bracket,

{QG(ω, a),D} is a symmetry generator. In much the same way as for the Hamiltonian, we

now want to show that one can find representatives for the Poincaré generators that are

duality invariant,

{QD
G(ω, a),D} = 0, (3.28)

by adding terms proportional to the new constraints.

The first step in the proof consists in showing that the reduced phase space generators,

i.e., the generators QG(ω, a) for which all variables except for the physical Ha
TT have been

set to zero, are duality invariant. All other contributions to QG(ω, a) are then shown

to be proportional to the constraints of Pauli-Fierz theory. Both these steps follow from

straightforward but slightly tedious computations. For the generators of rotations and

boosts for instance the computation is more involved because the explicit xi dependence

has to be taken into account when performing integrations by parts.

In terms of the new variables, the terms proportional to the constraints are bilinear

in (h1, A2), (π2, A2), (h1, C1) and (π2, C1). The duality invariant generators QD
G(ω, a)

are then obtained by adding the same terms with the substitution h1 → h2, A2 → −A1,

π2 → −π1 and C1 → C2, while keeping unchanged the terms involving only the physi-

cal variables Ha
TT .

As a consequence, the duality invariant Poincaré transformations of h1, π2 are un-

changed on the extended constraint surface. They are given by (A.31)–(A.32) where
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ξ⊥ = −ω0
νx

ν + a0 and ξi = −ωi
νx

ν + ai. Because of (3.28), those of h2,−π1 are ob-

tained, on the contraint surface, by applying a duality rotation to the right hand-sides

of (A.31)–(A.32).

An open question that we plan to address elsewhere is the construction of the canonical

generators for global Poincaré transformations in the presence of both types of sources that

will be introduced in the next section.

4. Coupling to conserved electric and magnetic sources

4.1 Interacting variational principle

We define

ha
0m = na

m = ha
m0, ha

00 = −2na, (4.1)

and consider the action

ST [zA, uα;T aµν ] =
1

16πG
SG + SJ , (4.2)

with SG given in (3.6) and the gauge invariant interaction term

SJ =

∫
d4x

1

2
ha

µνT
µν
a , ∂µT

µν
a = 0, (4.3)

where T µν
a ≡ (T µν ,Θµν) are external, conserved electric and magnetic energy-

momentum tensors.

4.2 Linearized Taub-NUT solution

We start by considering the sources corresponding to a point-particle gravitational dyon

with electric mass M and magnetic mass N at rest at the origin of the coordinate system,

for which

T µν
a (x) = δµ

0 δ
ν
0Maδ

(3)(xi), Ma = (M,N). (4.4)

In this case, only the constraints (3.13) are affected by the interaction and become

Ha⊥ = −16πGMaδ
(3)(x). (4.5)

They are solved by

∆Ca = GMa

(
4

r

)
, (4.6)

where r =
√
xixi. It is then straightforward to check that all equations of motions are

solved by

Ca = GMa(2r), na = GMa

(
− 1

r

)
, Aa

m = nam = Ha
mn = 0,

ha
mn = GMa

(
δmn +

xmxn

r3

)
, πmn

a = 0. (4.7)
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The usual Schwarzschild form is obtained after a gauge transformation with parameter

ξam = GMa(−1
2

xm

r
), ξa⊥ = 0. The solution then reads

Ca = GMa(2r), na = GMa

(
− 1

r

)
, Aa

m = GMa

(
− 1

2

xm

r

)
, nam = Ha

mn = 0,

ha
mn = GMa

(
2xmxn

r3

)
, πmn

a = 0. (4.8)

By computing the Riemann tensor in terms of the canonical variables in appendix B, we

show that this solution describes the linearized Taub-NUT solution. It resolves the string

singularity of the linearized Taub-NUT solution in the standard Pauli-Fierz formulation.

In spherical coordinates, the latter can for instance be described by

hrr =
2GM

r
= h00, h0ϕ = −2N(1 − cos θ), (4.9)

and all other components vanishing, with a string-singularity along the negative z-axis.

5. Surface charges

5.1 Regge-Teitelboim revisited

Because the theory is not local as a Hamiltonian gauge theory, the analysis of surface

charges cannot directly be performed as in [29, 30]. We thus revert to the original Hamil-

tonian method of [31, 32] and adapt it to the present situation of exact solutions, where

there is no need to discuss fall-off conditions.

Let LH = aAż
A − h− γαu

α, with h a first class Hamiltonian density and γα first class

constraints and define φi = (zA, uα). Even though it is not so for our theory, let us first run

through the arguments in the case where one has Darboux coordinates for the symplectic

structure, i.e., when σAB = ∂aB

∂zA − ∂aA

∂zB is the constant symplectic matrix. We furthermore

suppose that we are in a source-free region of spacetime. In this case one can show that

δεz
A δLH

δzA
+ δεu

α δLH

δuα
= −∂0

(
γαε

α
)
− ∂is

i
ε, (5.1)

where si
ε = si

ε[z, u] vanishes when the Hamiltonian equations of motion, including con-

straints, are satisfied, si
ε ≈ 0. This identity merely expresses the general fact that the

Noether current sµ
ε associated to a gauge symmetry can be taken to vanish when the equa-

tions of motions hold (see e.g. [28], section 3), sµ
ε ≈ 0, and that the integrand of the

generator is given by (minus) the constraints contracted with the gauge parameters in the

Hamiltonian formalism, s0ε = −γαε
α. An explicit expression for si

ε in terms of the structure

functions can for instance be found in appendix D of [30]. Using integrations by parts, one

can write the variations of the constraints under a change of the canonical coordinates zA

as an Euler-Lagrange derivative, up to a total derivative,

δz(γαε
α) = δzA δ(γαε

α)

δzA
− ∂ik

i
ε. (5.2)
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where ki
ε = ki

ε[δz, z] depends linearily on δzA and its spatial derivatives. Taking the time

derivative of (5.2) and using a variation δφ of (5.1) to eliminate ∂0δz(γαε
α), one finds

∂i

(
∂0k

i
ε − δφsi

ε

)
= ∂0

(
δzA δ(γαε

α)

δzA

)
+ δφ

(
δεz

A δLH

δzA
+ δεu

α δLH

δuα

)
. (5.3)

One now takes εαs to satisfy δεsz
A
s = 0 = δεsu

α
s . Note that in the case of Darboux co-

ordinates, this also implies that δ(γαεα
s )

δzA = 0. If furthermore zA
s , u

α
s is a solution of the

Hamiltonian equations of motion, the r.h.s. of (5.3) also vanishes. By using a contracting

homotopy with respect to δφi and their spatial derivatives, one deduces that

∂0k
i
εs

[δz, zs] = (δφs
i
εs

)[zs]− ∂jk
[ij]
εs
, (5.4)

where k
[ij]
εs = k

[ij]
εs [δφ, φs] depends linearily on δφi and their spatial derivatives. Finally,

when δzA
s , δu

α
s satisfy the linearized Hamiltonian equations of motion, including constraints,

we find from (5.2) and (5.4) that

∂ik
i
εs

[δzs, zs] = 0, ∂0k
i
εs

[δzs, zs]− ∂jt
[ij]
εs

= 0. (5.5)

At a fixed time t = x0, consider a closed 2 dimensional surface S, ∂S = 0, for instance a

sphere with radius r and define the surface charge 1-forms by

δ/Qεs [δzs, zs] =

∮

S

d2xi k
i
εs

[δzs, zs], (5.6)

where d2xi = 1
2ǫijkdx

j ∧ dxk. The first relation of (5.5) implies that the surface charge

1-form only depends on the homology class of the closed surface S,

∮

S1

d2xm km
εs

[δzs, zs] =

∮

S2

d2xm km
εs

[δzs, zs]. (5.7)

Here S1 − S2 = ∂Σ, where Σ is a three-dimensional volume at fixed time t containing no

sources. For instance, the surface charge 1-form does not depend on r. The second relation

of (5.5) implies that it is conserved in time and so does not depend on t either,

d

dt
δ/Qεs [δzs, zs] = 0. (5.8)

The question is then whether these charge 1-forms are integrable, see e.g. [33, 34, 30] for a

discussion.

5.2 Linear theories

In the case of linear theories, the latter problem does not arise and the whole analysis

simplifies. One can replace (5.2) by

γαε
α = zA δ(γαε

α)

δzA
− ∂ik

i
ε[z], (5.9)

– 13 –



J
H
E
P
0
1
(
2
0
0
9
)
0
3
0

where δ/δzA are the (spatial) Euler-Lagrange derivatives and ki
ε[z] depends linearily both

on the phase space variables zA and their spatial derivatives and on the gauge parameters.

One then uses (5.1) directly to eliminate ∂0(γαε
α) from the time derivative of (5.9), to get

∂i

[
∂0k

i
ε − si

ε

]
= ∂0

[
zA δ(γαε

α)

δzA

]
+ δεz

A δLH

δzA
+ δεu

α δLH

δuα
. (5.10)

For gauge parameters εαs that satisfy

δεsz
A = 0 = δεsu

α, (5.11)

one then arrives at

∂ik
i
εs

[z] = −γαε
α, ∂0k

i
εs

[z] = si
εs

[z, u] − ∂jk
[ij]
εs
. (5.12)

For a solution za
s , u

α
s , the surface charges

Qεs [zs] =

∮

S

d2xi k
i
εs

[zs], (5.13)

are again independent of r and t.

When this analysis is applied to the Hamiltonian formulation of Pauli-Fierz theory,

one finds the standard expressions

ki
ε[z] = 2ξmπ

mi − ξ⊥(δmn∂i − δmi∂n)hmn + hmn(δmn∂i − δni∂m)ξ⊥, (5.14)

while the only solutions to (5.11) are ξµs = −ω[µν]x
ν + aµ, for some constants aµ, ω[µν] =

−ω[νµ]. In this context of flat space, Greek indices take values from 0 to 3 with µ = (⊥, i).
Indices µ are lowered and raised with ηµν = diag (−1, 1, 1, 1).

5.3 Electric and magnetic energy-momentum and angular momentum surface

charges

The previous analysis is not directly applicable to our case since we do not have Darboux

coordinates and the Poisson brackets of the fundamental variables are non-local. In partic-

ular, the gauge transformations (3.17) do not allow for non trivial solutions to δεsz
A = 0.

We also have to keep the sources explicitly throughout the argument, because ∆−1 applied

to localized sources will spread them out throughout space and we need to check that we

are only dropping terms that indeed vanish outside of the sources.

In the presence of the sources, the constraints γJ
α = (HJ

am,HJ
a⊥) are determined

HJ
am = Ham − (16πG)T 0

am, HJ
a⊥ = Ha⊥ − (16πG)T 0

a0 . (5.15)

Instead of (5.9), we can write

γJ
αε

α = (∂mξan + ∂nξam)ǫabπ
b
mn + (δmn∆− ∂m∂n)ξa⊥hamn − ∂ik̃

i
ε[z]

−(16πG)(T 0
amξ

am + T 0
a0ξ

a⊥), (5.16)
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where

k̃i
ε[z] = 2ξa

mǫabπ
bmi − ξa⊥(δmn∂i − δmi∂n)hamn + hamn(δmn∂i − δni∂m)ξa⊥. (5.17)

Consider now gauge parameters ǫαs (x) satisfying the conditions

{
∂mξan

s + ∂nξam
s = 0 = ∂0ξ

am
s − ∂mξa⊥

s ,

(δmn∆− ∂m∂n)ξa⊥
s = 0 = ∂0ξ

a⊥
s ,

(5.18)

The general solution to conditions (5.18) can be written as

ξa
µs = −ωa

[µν]x
ν + aa

µ, (5.19)

for some constants aa
µ, ωa

[µν] = −ωa
[νµ]. It follows in particular that the surface charges

Qεs [zs] =
1

16πG

∮

S

d2xi k̃
i
εs

[zs], (5.20)

do not depend on the homology class of S outside of sources.

Assuming ∆ invertible, the equations of motion associated to LT = 1
16πG
LH + LJ

imply in particular that

∂0h
a
mn = ∂mn

a
n + ∂nn

a
m − 2ǫab∆Hbmn + ǫabδmn∆Hb

+(16πG)ǫab

(
∆−1(OTb)mn+

1

2
∆−2∂mǫnpq∂

p∂kT
kq
b +

1

2
∆−2∂nǫmpq∂

p∂kT
kq
b

)
,

ǫab∂0π
b
mn =

(
PTTHa

)
mn

+ (8πG)Tamn −

−1

2
(δmn∆− ∂m∂n)

(
2na +

1

2
∆Ca

)
. (5.21)

By direct computation using the equations of motion, one then finds

∂0k̃
i
εs

[zs] = (16πG)(ξa
µsT

µi
a )− ∂jk

[ij]
εs

[zs, us], (5.22)

with

k[ij]
εs

[z, u] =

(
2ni

a∂
jξa⊥

s + ξa⊥
s ∂inj

a + ξai
s ∂

j

(
2na +

1

2
∆Ca

)
+ ξa

smǫ
mpq∂p∂

iHj
aq

+ωaj∂kH i
ak + ωai∂jHa + 2ωak∂iHj

ak + 16πGǫabǫimq∆−1T j
bq∂mξ

⊥
as

+8πGǫabǫmpq∂p∆
−2∂iT j

bq∂mξ
⊥
as − (i←→ j)

)

+ǫijk
[
ωa

k

(
2na +

1

2
∆Ca

)
− ξam

s (∆Hamk − ∂m∂
rHark)

−16πGǫab∆−1∂rTbrkξ
⊥
as + 8πGǫab(∆−1Tm

bk + ∆−2∂m∂rTbrk)∂mξ
⊥
as

]
, (5.23)

where ωa
mn = ωakǫkmn. The surfaces charges (5.20) are thus also time-independent outside

of sources.
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Finally, the surface charges are gauge invariant,

k̃i
εs

[δηz] = ∂jr
[ij]
εs,η, (5.24)

r[ij]εs,η =
(
2ξaj

s ∂
iη⊥a + 2ηj

a∂
iξa⊥

s + ξa⊥
s ∂jηi

a − (i←→ j)
)
− 2ǫijkωa

kη
⊥
a . (5.25)

Defining

Qǫs [z] =
1

2
ωa

µνJ
µν
a − aa

µP
µ
a , (5.26)

we get for the individual generators

(16πG)P⊥
a = −

∮

S∞

d2xm ∂m∆Ca =

∮

S∞

d2xm (∂nh
mn
a − ∂mha) , (5.27)

(16πG)Pn
a = 2

∮

S∞

d2xm ǫab∆H
bnm = −2

∮

S∞

d2xm ǫabπ
bmn, (5.28)

(16πG)Jkl
a = 2

∮

S∞

d2xm ǫab

(
∆Hbmkxl −∆Hbmlxk

)
(5.29)

= −2

∮

S∞

d2xm ǫab

(
πbmkxl − πbmlxk

)
, (5.30)

(16πG)J⊥k
a =

∮

S∞

d2xm

(
∆Caδmk − ∂m∆Cax

k
)

(5.31)

=

∮

S∞

d2xm

[
(∂nh

mn
a − ∂mha) x

k − hmk
a + haδ

mk
]
. (5.32)

The only non-vanishing surface charges of the dyon sitting at the origin are

P⊥
a = Ma. (5.33)

As expected, they measure the electric and magnetic mass of the dyon.

For later use, we combine k̃i
ε, k

[ij]
ε into the n − 2 forms kε[z, u] through the following

expressions in Cartesian coordinates,

kε = k[µν]
ε dn−2xµν , k[0i]

ε = k̃i
ε, (5.34)

dn−kxµ1...µk
=

1

k!(4 − k)!ǫµ1...µkνk+1...ν4
dxνk+1 . . . dxν4, (5.35)

where ǫαβγδ is completely skew-symmetric with ǫ0123 = 1 and the wedge product between

the differentials is understood. Equations (5.16) and (5.22) can then be summarized by

dkεs ≈ −(16πG)Tεs , Tεs = T µ
aνξ

aν
s d3xµ, dTεs = 0, (5.36)

where closure of the n − 1-forms Tεs follows from the conservation of the sources, the

symmetry of the energy-momentum tensor and (5.19).

Remark. In fact we have checked here that the standard expressions for surface charges

in Pauli-Fierz theory, when extended in a duality invariant way, have all the expected

properties. More interesting would be to develop the theory of surface charges from scratch

in theories where the Poisson brackets among the fundamental variables are not local to

see if the ones we have found exhaust all possibilities. From the preceding discussion

we see that pseudo-differential operators will play a crucial role for a discussion of these

generalized conservation laws, as they do in the discussion of ordinary conservation laws

for evolution equations of the Korteweg-de Vries type for instance.
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5.4 Poincaré transformations of surface charges

Suppose now that zA
s , u

α
s solve the equations of motions for the conserved sources T µν

a (x).

Let z′As , u′αs be the solution associated to new sources T ′µν
a (x) related to T µν

a (x) through a

(proper) Poincaré transformation, x′µ = Λµ
νx

ν + bµ with |Λ| = 1,

T ′µν
a (x′) = Λµ

αΛν
βT

αβ
a (x). (5.37)

For instance, starting from the conserved energy-momentum tensors (4.4) of a dyon sitting

at the origin with world-line zµ = δµ
0 s, one can obtain in this way the conserved energy-

momentum tensors of a dyon moving along a straight line, z′µ = uµs + aµ with uµ, aµ

constant, uµuµ = −1 and s the proper time,

T ′µν
a (x′) = Mau

ν

∫
dλδ(4)(x′ − z′(λ))

dz′µ

dλ
= Ma

uµuν

u0
δ(3)(x′i − z′i(x0)). (5.38)

when Λµ
0 = uµ.

Assume then that the ξµ
as(x) transform like vectors

ξ′νas(x
′) = Λµ

αξ
α
as(x) = −(ΛωaΛ

−1x′)ν + (ΛωaΛ
−1b+ Λaa)

ν , (5.39)

which implies that the Tεs are closed Poincaré invariant n− 1 forms,

T ′
ε′s

(x′, dx′) = Tεs(x, dx). (5.40)

We can then use the following variant of the tube lemma. Suppose that at fixed time x0,

T 0ν
a (x)ξaν

s (x) has compact support and that there exists a tube, i.e., a space-time volume

W connecting the hypersurfaces Ω : K = x0 and Ω′ : K = x′0 = Λ0
νx

ν + b0 with K a

constant such that, ∂W = Ω′ − Ω + T . If nothing flows out through T ,
∫
T Tεs = 0, it

follows from Stokes’ theorem and (5.40) that

∫

Ω
Tεs =

∫

Ω′

Tεs =

∫

Ω′

T ′
ε′s
. (5.41)

If we now compute the surface charges for a large enough sphere S at fixed x0 containing

both T 0ν
a (x)ξaν

s (x) and T ′0ν
a (x)ξ′aν

s (x), it finally follows from (5.16) or (5.36) that the

surface charges evaluated for the new solutions z′A are obtained from those of the old

solutions zA through

Qε′s
[z′s] = Qε[zs]. (5.42)
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A. Poincaré generators for Pauli-Fierz theory

In this appendix, we assume that the canonical variables vanish sufficiently fast at the

boundary so that integrations by parts can be used even if the gauge parameters do not

vanish at the boundary.

In the Hamiltonian formulation of general relativity [25], the canonically conjugate

variables are the spatial 3 metric gij and the extrinsic curvature πij. The constraints are

explicitly given by

H⊥ =
1√
g

(
πmnπmn −

1

2
π2

)
−√gR , Hi = −2∇jπ

j
i. (A.1)

The associated generators of gauge transformation H[ξ] =
∫
d3x

(
H⊥ξ

⊥ +Hiξ
i
)

satisfy

the so-called surface deformation algebra [35, 36],

{H[ξ],H[η]} = H[[ξ, η]SD], (A.2)

[ξ, η]⊥SD = ξi∂iη
⊥ − ηi∂iξ

⊥, (A.3)

[ξ, η]iSD = gij
(
ξ⊥∂jη

⊥ − η⊥∂jξ
⊥
)

+ ξj∂jη
i − ηj∂jξ

i. (A.4)

When the parameters f, g of gauge transformations depend on the canonical variables, (A.2)

is replaced by [37]

{H[f ],H[g]} = H[k], (A.5)

k = [f, g]SD + δgf − δfg −m, (A.6)

m⊥ =

∫
d3x′

[
{f⊥, g⊥(x′)}H⊥(x′) + {f⊥, gj(x′)}Hj(x

′)
]
, (A.7)

mi =

∫
d3x′

[
{f i, g⊥(x′)}H⊥(x′) + {f i, gj(x′)}Hj(x

′)
]
, (A.8)

where

δξgij =∇iξj +∇jξi + 2Dijklπ
klξ⊥, (A.9)

Dijkl =
1

2
√
g
(gikgjl + gjkgil − gijgkl), (A.10)

δξπ
ij =− ξ⊥√g

(
Rij − 1

2
gijR

)
+

ξ⊥

2
√
g
gij

(
πklπkl −

1

2
π2

)

− 2
ξ⊥√
g

(
πimπj

m −
1

2
πijπ

)
+
√
g(∇j∇iξ⊥ − gij∇m∇mξ⊥)

+∇m(πijξm)−∇mξ
iπmj −∇mξ

jπmi. (A.11)

Let gij = δij + hij and consider the canonical change of variables from gij , π
kl to

zA = (hij , π
kl). We will expand in terms of the homogeneity in the new variables and use

the flat metric δij to raise and lower indices in the remainder of this appendix. Furthermore,

Greek indices take values from 0 to 3 with µ = (⊥, i). Indices are lowered and raised with

ηµν = diag(−1, 1, 1, 1) and its inverse. Let ω̃µν = −ω̃νµ.

– 18 –



J
H
E
P
0
1
(
2
0
0
9
)
0
3
0

To lowest order, i.e., when gij = δij , the vector fields

ξP (ω̃, ã)µ = −ω̃µ
ix

i + ãµ, (A.12)

equipped with the surface deformation bracket form a representation of the Poincaré

algebra [31],

[ξP (ω̃1, ã1), ξP (ω̃2, ã2)]
(0)
SD = ξP ([ω̃1, ω̃2], ω̃1ã2 − ω̃2ã1). (A.13)

For the gauge generators, we find H[ξ] = H(1)[ξ] +H(2)[ξ] +H(3)[ξ] + · · · , where

H(1)[ξ] =

∫
d3x

(
−2∂jπijξ

i + (∂i∂jhij −∆h)ξ⊥
)

(A.14)

=

∫
d3x

(
H(1)

m ξm +H(1)
⊥ ξ⊥

)
(A.15)

are the gauge generators associated to the constraints (2.3) of the Pauli-Fierz theory.

Because

H[[ξ, η]SD] = H(1)[[ξ, η]
(0)
SD] +H(2)[[ξ, η]

(0)
SD] +H(1)[[ξ, η]

(1)
SD] +O(z3), (A.16)

we have to lowest non trivial order
{
H(1)[ξ],H(2)[η]

}
= H(1)[[ξ, η]

(0)
SD]. (A.17)

This means that H(2)[η] are observables, i.e., weakly gauge invariant functionals.

One can use integrations by parts to show that H(1)[ξP ] = 0. It then follows that

{H[ξP ],H[ηP ]} =
{
H(2)[ξP ],H(2)[ηP ]

}
+O(z3). (A.18)

For vectors ξP (ω̃, ã), ηP (θ̃, b̃) of the form (A.12), the first term on the r.h.s. of (A.16)

vanishes on account of (A.13). To lowest non trivial order, (A.2) then implies
{
H(2)[ξP ],H(2)[ηP ]

}
= H(2)[[ξP , ηP ]

(0)
SD] +H(1)[[ξP , ηP ]

(1)
SD]. (A.19)

The generators H(2)[ξP ] equipped with the Poisson bracket thus form a representation of

the Poincaré algebra when the constraints of the Pauli-Fierz theory are satisfied. Explicitly,

the term proportional to the constraints is

H(1)[[ξ, η]
(1)
SD] = −2

∫
d3x ∂jπjih

ik(ξ⊥P θ
⊥

k − η⊥P ω⊥
k), (A.20)

while

H(2)
i =− 2∂j

(
πjkhik

)
+ πjk∂ihjk (A.21)

H(2)
⊥ =πijπij −

1

2
π2

+
1

4
∂khij∂

khij − 1

2
∂kh

ki∂jhij +
1

2
∂ih∂jh

ij − 1

4
∂ih∂

ih

+ ∂l

(
1

2
h∂lh− hij∂lhij −

1

2
h∂ih

il − hil∂ih+
3

2
hlj∂ihij +

1

2
hij∂

ihjl

)
. (A.22)
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Isolating terms proportional to the constraints, we find

H(2)[ξ] =

∫
d3x

(
Hmh

miξi +
1

2
Hhξ⊥

)
+ H̄(2)[ξ], (A.23)

H̄(2)
i =− πjk(∂jhki + ∂khji − ∂ihjk), (A.24)

H̄(2)
⊥ =πijπij −

1

2
π2

+
1

4
∂khij∂

khij − 1

2
∂kh

ki∂jhij +
1

4
∂ih∂

ih

+ ∂l

(
−hij∂lhij − hil∂ih+

3

2
hlj∂ihij +

1

2
hij∂

ihjl

)
, (A.25)

with H̄(2)[ξ] =
∫
d3x

(
H̄(2)

i ξi + H̄(2)
⊥ ξ⊥

)
. On account of (A.17) and the analog of (A.5) for

H(1)[f ], it follows that

{
H̄(2)[ξP ], H̄(2)[ηP ]

}
≈ H̄(2)[[ξP , ηP ]

(0)
SD], (A.26)

where ≈ means an equality up to terms proportional to the constraints Hm,H⊥ of Pauli-

Fierz theory. Note that the functionals H(2)[ξP ] and H̄(2)[ξP ] generate transformations of

the canonical variables that are equivalent because they differ at most by a gauge trans-

formation of the Pauli-Fierz theory when restricted to the constraint surface.

The generators for global Poincaré transformations of Pauli-Fierz theory can then be

identified as

QG(ω, a) =
1

2
ωµνJ

µν
G − aµP

µ
G = H̄(2)[ξP (ω̃, ã)]

ω̃µν = ωµν , ã⊥ = a⊥, ãi = ai + ω⊥ix
0. (A.27)

Indeed, differentiating (A.19) with respect to b⊥ gives

{H,QG(ω, a)} =
∂

∂t
QG(ω, a) + 2

∫
d3x ∂jπjih

ikω⊥k. (A.28)

When combined with (A.19) and (A.27), this shows that, on the constraint surface, the

generators QG(ω, a) are conserved and satisfy the Poincaré algebra.

Finally, we can further simplify the explicit expression for H̄(2)[ξP ] by using linearity

of ξP in xi and integrations by parts to show that

∫
d3x H̄(2)

⊥ ξ⊥P =

∫
d3x

[
πijπij −

1

2
π2 +

1

4
∂khij∂

khij − 1

2
∂kh

ki∂jhij

+
1

4
∂ih∂

ih+ ∂l

(
h∂ih

il + hlj∂ihij

)]
ξ⊥P . (A.29)

The expansion of the gauge transformations (A.9), (A.11) gives to first order:

δ
(0)
ξ hij = ∂iξj + ∂jξj, δ

(0)
ξ πij = (∂i∂j − δij∆)ξ⊥, (A.30)

δ
(1)
ξ hij = ξk∂khij + ∂iξ

khkj + ∂jξ
khik + 2πijξ

⊥ − δijπξ⊥, (A.31)
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δ
(1)
ξ πij =

1

2
h(∂i∂j − δij∆)ξ⊥ − him∂m∂

jξ⊥ − hjm∂m∂
iξ⊥ + hij∆ξ⊥

+δijhmn∂m∂nξ
⊥ + ∂m(πijξm)− πmj∂mξ

i − πmi∂mξ
j

+
1

2
∂kξ

⊥
[
− ∂jhki − ∂ihkj + ∂khij + δij(2∂lh

kl − ∂kh)
]

+
1

2
ξ⊥

[
∂i∂jh+ ∆hij − ∂k∂

ihjk − ∂k∂
jhik − δij(∆h− ∂k∂lh

kl)
]
. (A.32)

B. Riemann tensor and canonical variables

By following [1, 11] (up to conventions), we show in this appendix that the duality rotations

that we have defined coincide on-shell with the standard simultaneous duality rotations

among the (linearized) Riemann tensor and its dual together with those for the electric

and magnetic conserved sources. We do this by showing how the covariant Riemann tensor

is expressed in terms of the canonical variables. This gives us the appropriate generalization

of the Gauss-Codazzi relations in the case of both electric and magnetic sources.

B.1 Covariant equations in the presence of magnetic sources

Our conventions are as follows. Define ǫa1...an = ǫa1...an to be totally skew-symmetric with

ǫ1...n = 1. The Levi-Civita tensor is εa1...an =
√
|g|ǫa1...an . Indices on this tensor are raised

with the metric, which implies that ε
a1...an = (−)σ√

|g|
ǫa1...an where σ is the signature of the

metric. Our convention for the dual is ∗ωa1...an−p
= 1

p!ω
b1...bp

εb1...bpa1...an−p
.

In flat Minkowski spacetime, traces are taken with the flat Minkowsi metric ηµν =

diag(−1, 1, 1, 1). Start with the “(linearized) Riemann tensor” R1
µνρσ ≡ Rµνρσ , with only

symmetry properties skew-symmetry in the first and last pairs of indices,

Rµνρσ = −Rνµρσ = −Rµνσρ. (B.1)

Its double dual (cf. MTW [38])

G− 1
µνρσ ≡ G− µνρσ =

1

4
εµν

αβRαβ
γδ

εγδρσ , (B.2)

has the same symmetry properties. If ordinary duals of Rµνρσ and G− µνρσ are taken with

respect to the last pair of indices, and we define

R2
µνρσ ≡ −∗Rµνρσ = −1

2
Rµν

αβ
εαβρσ, (B.3)

G− 2
µνρσ ≡ −∗G− µνρσ =

1

2
εµν

αβRαβρσ, (B.4)

we have

Ra
µνρσ = ǫab(∗R)b µνρσ , G− a

µνρσ = ǫab∗G− b µνρσ. (B.5)

The 36 independent components of the Riemann tensor can be encoded in

Ra
0m0n, G− a

0m0n. (B.6)
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The Ricci and Einstein tensors are defined as

Ra
µν = Raα

µαν , Ga
µν = G− aα

µαν = Ra
νµ −

1

2
ηµνR

a. (B.7)

If electric and magnetic conserved sources are T µν
a ≡ (T µν ,Θµν), with T µν

a = T νµ
a symmet-

ric, ∂µT
µν
a = 0, the duality rotations are defined by

Ra′
µνρσ = Ma

bR
b
µνρσ , T a′

µν = Ma
bT

b
µν ,

McaM
c
b = δab. (B.8)

For a tensor Kµν , let K̄µν = Kµν − 1
2η

µνK.

It has been shown in [11] that the duality invariant equations of motion are

Gµν
a = 8πGT µν

a ⇐⇒ Ra
µνρσ +Ra

µσνρ +Ra
µρσν = 8πGǫab

εδνρσ T
δ
b µ. (B.9)

They imply in particular that, on-shell, the tensors Ra
µνρσ are symmetric in the ex-

change of pairs of indices and that Ra
µν , G

a
µν are symmetric. Furthermore, the Bianchi

“identities” read

∂ǫR
a
γδαβ + ∂βR

a
γδǫα + ∂αR

a
γδβǫ = 8πGǫab

εǫαβρ

(
∂γT

ρ
b δ − ∂δT

ρ
b γ

)

⇐⇒ ∂µR
γδρµ
a = 8πG

(
∂δT

ργ
a − ∂γT

ρδ
a

)
, (B.10)

while the contracted Bianchi identities are

∂νG
µν
a = 0. (B.11)

Let

Kλτ
µνρσ[Ra

λτ ] =
1

2

[
ηµρR

a
νσ + ηνσR

a
µρ − ηµσR

a
νρ − ηνρR

a
µσ

]
−

−R
a

6
[ηµρηνσ − ηµσηνρ] . (B.12)

Defining

R̃a
µνρσ = Ra

µνρσ −
1

2
ǫab

ερσαβK
λτ

µν
αβ

[Rbλτ ], (B.13)

the tensor R̃a
µνρσ is skew in the first and last pairs of indices, satisfies the cyclic identity

because ε
γνρσRa

µνρσ = ε
γνρσ 1

2ǫ
ab

ερσαβK
λτ

µν
αβ

[Rbλτ ] and, as a consequence, is also sym-

metric in the exchange of the first and last pair of indices, R̃a
µνρσ = R̃a

ρσµν . The associated

Ricci tensors R̃a
νσ = Ra

νσ − 1
2ǫ

ab
ενσµαR

µα
b is then symmetric, R̃a

νσ = R̃a
σν . It follows that

R̃a
νσ = Ra

(νσ) and Ra
[νσ] = 1

2ǫ
ab

ενσµαR
µα
b . The Weyl tensors are then defined as usual in

terms of R̃a
µνρσ ,

Ca
µνρσ = R̃a

µνρσ −Kλτ
µνρσ [R̃a

λτ ], (B.14)

and satisfy all standard symmetry properties: skew-symmetry in the first and last pairs

of indices, tracelessness (because R̃a
νσ = Kλτ µ

νµσ[R̃a
λτ ]), the cyclic identity (because
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ǫγνρσKλτ
µνρσ[R̃a

λτ ] = 0), which implies also symmetry in the exchange of the first and

last pair of indices,

Ca
µνρσ = −Ca

νµρσ = −Ca
µνσρ, (B.15)

Cµa
νµσ = 0, ǫγνρσCa

µνρσ = 0, Ca
µνρσ = Ca

ρσµν . (B.16)

As usual, the 10 independent components of the Weyl tensor can be parametrized by the

electric and magnetic components Ea
mn ≡ (Emn, Bmn), symmetric and traceless tensors

defined by

Ea
mn = Ca

0m0n =
1

2
ǫnjkǫ

abC jk
b 0m . (B.17)

Putting all definitions together, the relation between the Riemann and Weyl tensors is

Ra
µνρσ = Ca

µνρσ +Kλτ
µνρσ [Ra

λτ ] +
1

2
ǫab

ερσαβK
λτ

µν
αβ

[Rb(λτ)] (B.18)

= Ca
µνρσ +Kλτ

µνρσ [Ra
(λτ)] +

1

2
ǫab

ερσαβK
λτ

µν
αβ

[Rbλτ ]. (B.19)

In particular, it follows that the 36 independent components of the Riemman tensor R1
µνρσ

can be parameterized by the 10 independent components of the Weyl tensor C1
µνρσ, the 16

components of the Ricci tensor R1
λτ , and the 10 components of R2

(λτ).

If we define

Ea
mn = Ra

0(m|0|n), Fam =
1

2
ǫmjkRa

0[j|0|k], Ra
mn = Ra

(mn) + Ea
mn (B.20)

the parameterization consisting in choosing the symmetric tensors Ea
mn,Ra

mn (24 compo-

nents), Fa
m, (6 components), and R1

[µν](=
∗R2

[µν]) (6 components) is more useful for our pur-

pose. That all tensors can be reconstructed from these variables follows from the fact that

Ra
0m = −2ǫabFbm, Ra

00 = Ea, Ra
(mn) = Ra

mn − Ea
mn. (B.21)

This means that the symmetric part of the Ricci tensors can be reconstructed from the

variables. Since the antisymmetric parts belong to the variables, so can the complete Ricci

tensors Ra
µν . Using now (B.18) and definitions (B.17), (B.20), (B.12), we find

Ea
mn =

1

2
(Ea

mn +Ra
mn)− δmn

6
(Ea +Ra). (B.22)

It follows that the Weyl tensors and then, using again (B.18), the Riemann tensors can be

reconstructed.

In terms of the new parameterization, the equations of motion (B.9) read Ra
[µν] = 0

and

− 2ǫabFbm = 8πGT a
0m, (B.23)

1

2
Ra = 8πGT a

00, (B.24)

Ra
mn − Ea

mn + δmn

(
Ea − 1

2
Ra

)
= 8πGT a

mn. (B.25)
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Using these equations of motion, the Bianchi identities (B.10) are equivalent to

∂k(ǫikmFam +Ra
ik) =

1

2
∂iRa, (B.26)

2ǫab∂0Fbm = ∂n(Ea
mn + ǫmnkFak)− ∂mEa, (B.27)

∂0Ra
ik =

1

2
ǫab

[
ǫkjl∂

jEbil + ǫijl∂
jEbkl − 2δik∂jF j

b − ∂iFbk − ∂kFbi

]
⇐⇒

ǫab∂0

(
Rik

b −
1

2
δikRb

)
= −1

2

[
ǫklm∂lEa

m
i+ǫilm∂lEa

m
k+2δik∂jFa

j −∂iFak − ∂kFai
]
. (B.28)

B.2 Canonical expressions

We will now express the Riemann tensor in terms of the canonical variables in such a

way that the covariant equations (B.23)–(B.28) coincide with the Hamiltonian equations

deriving from (4.2).

From the constraints with sources, we find

Ra = ∂m∂nha
mn −∆ha = −∆2Ca, (B.29)

Fa
m =

1

2
∆∂nHa

mn. (B.30)

Assuming ∆ to be invertible, which we do in the rest of this appendix, Ra and Ca, re-

spectively Fa
m and ∂nHa

mn determine each other. By taking the divergence, the Bianchi

identity (B.26) implies that

∂m∂nRa
mn = −1

2
∆3Ca.

Similarily, the Bianchi identity (B.27) implies in particular that ∆Ea − ∂m∂nEa
mn =

ǫab∂0∆∂
m∂nHbmn. When combined with (B.25), the equations of motion following from

variation with respect to Ca read

1

2
∆3Ca + ǫab∆∂0(∆Hb − ∂m∂nHbmn) + 2∆2na = ∆Ea − ∂m∂n(Ra

mn − Ea
mn).

When combined with the previous relations, they imply that

Ea = −1

2
ǫab∂0∆Hb + ∆na,

∂m∂nEa
mn = −1

2
ǫab∂0∆(∆Hb − 2∂m∂nHbmn) + ∆2na.

The rest of the Bianchi identities (B.26), (B.27) are taken into account by applying a curl.

This gives ǫrsi∂s∂
kRa

ik = 1
2∆(∆∂kHar

k − ∂r∂m∂nHa
mn) and ǫrsi∂s∂

kEa
ik = ǫrsi2ǫab∂0∂sFbi −

∂r∂kFa
k + ∆Far. Yet another curl gives ∂k∂

m∂nRa
mn − ∆∂nRa

kn = 1
2ǫklr∂

l∆2∂nHar
n and

∂k∂
m∂nEa

mn−∆∂nEa
kn = 2ǫab∂0(∂k∂

nFbn−∆Fbk)+ǫklr∂
l∆Far. Using the previous relations

we then get

∂nRa
kn = −1

2
∂k∆

2Ca − 1

2
ǫklr∂

l∆∂nHar
n ,

∂nEa
kn = ǫab∂0∆

(
− 1

2
∂kHb + ∂nHbkn

)
+ ∂k∆n

a − 1

2
ǫklr∂

l∆∂nHar
n .
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The equations of motion following from variation with respect to Aa
m are then identi-

cally satisfied.

Defining Da
mn = Ra

mn−Ea
mn and using definition (2.12) of PTT combined with (B.25),

the equations of motion following from variation with respect to Ha
mn read

ǫab∂0

[
2
(
PTTHb

)
mn

+∂m∆Ab
n+∂n∆Ab

m+
1

2
(δmn∆−∂m∂n)Cb

]
−ǫab∆(∂mn

b
n+∂nn

b
m)−

−2∆2Ha
mn + δmn∆2Ha = −ǫmpq∂

pDq
an − ǫnpq∂

pDq
am. (B.31)

Taking into account definition (2.12) and previous relations, we can extract

−∆−1
(
PTTDa

)
mn

=
1

2
ǫab∂0

[
2
(
PTTHb

)
mn
− ǫmpq∂n∂

p∂rHbq
r − ǫnpq∂m∂

p∂rHbq
r +

+∂m∆Ab
n+∂n∆Ab

m+
1

2
(δmn∆−∂m∂n)Cb

]
−ǫab∆(∂mn

b
n+∂nn

b
m)−

−∆2Ha
mn +

1

2
δmn∆2Ha. (B.32)

In order to extract the remaining information from (B.31), we first apply δmn∆ − ∂m∂n

to get

ǫab∂0∆C
b + 2∂m∂nHamn = 0, (B.33)

and then a divergence ∂m giving

ǫab∂0(∆A
b
n − ǫnpq∂

p∂kHbq
k ) = ǫab∆n

b
n + 2∆∂kHk

an −
1

2
∂n∆Ha − ∂n∂

k∂lHa
kl. (B.34)

We can now inject the latter relations into (B.31) and use (2.14), (2.6) to get

DaTT
mn =− ǫab∂0∆H

TT
bmn −

(
PTTHa

)
mn

, (B.35)

Da
mn =− ǫab∂0∆

[
Hbmn −

1

2
δmnHb

]
−

(
PTTHa

)
mn
− ∂m∂nn

a−

− 1

4
(δmn∆ + ∂m∂n)∆Ca. (B.36)

Injecting into the second form of the last Bianchi identity (B.28) and using previous

relations gives

ǫab∂0Rb
ij = − (ORa)ij + ∆2HTT

aij +
1

4
∆∂i∂

kHakj +
1

4
∆∂j∂

kHaki −
1

2
∂i∂j∂

k∂lHakl

−1

2
ǫab∂0

[
ǫiqn∂

q∆Hbn
j + ǫjqn∂

q∆Hbn
i +

1

2
(δij∆ + ∂i∂j)∆C

b

]
. (B.37)

Identifying the terms with time derivatives gives

Ra
ij = −1

2

[
ǫiqn∂

q∆Han
j + ǫjqn∂

q∆Han
i +

1

2
(δij∆ + ∂i∂j)∆C

a

]

=
1

2

[
∂i∂

kha
kj + ∂j∂

kha
ki − ∂i∂jh

a −∆ha
ij − ǫikl∂

k∂p∂jH
al
p − ǫjkl∂

k∂p∂iH
al
p

]
. (B.38)
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The terms without time derivatives in (B.37) then cancel identically. Together with (B.36)

this then finally gives

E ij
a = ǫab∂0∆

[
Hbij − 1

2
δijHb

]
+ ∂i∂jna −

1

2
ǫikl∂k∂

j∂pHalp −
1

2
ǫjkl∂k∂

i∂pHalp

= −ǫab∂0

(
πbij − 1

2
δijπb

)
+ ∂i∂jna −

1

2
ǫikl∂k∂

j∂pHalp −
1

2
ǫjkl∂k∂

i∂pHalp. (B.39)

B.3 Riemann tensor for linearized Taub-NUT

Following for instance [39] section A1.2 and using a regularization in Fourier space, we find

for the gravitational dyon at rest at the origin discussed in section 4.2,

Ra
ij = GMa

[
16π

3
δijδ

3(x) +
η(r)

r3

(
δij −

3xixj

r2

)]
, (B.40)

Ea
ij = GMa

[
4π

3
δijδ

3(x) +
η(r)

r3

(
δij −

3xixj

r2

)]
, (B.41)

where η(r) is a regularizing function that suppresses the divergence at the origin and is 1

away from the origin. We then find

Ra
00 = GMa4πδ3(x), Ra

ij = GMa4πδijδ
3(x), (B.42)

Ea
ij = GMa η(x)

r3

(
δij −

3xixj

r2

)
, (B.43)

and all other components of Ra
µν vanishing. For the Riemann tensor, this implies

Ra
0i0j = GMa

[
4π

3
δijδ

3(x) +
η(x)

r3

(
δij −

3xixj

r2

)]
, (B.44)

Ra
0ijk = −ǫabǫjk

lGMa

[
4π

3
δilδ

3(x) +
η(x)

r3

(
δil −

3xixl

r2

)]
, (B.45)

with all other components obtained through the on-shell symmetries of the Riemann tensor.

This is the usual Riemann tensor for the linearized Taub-NUT solution.
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