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1. Introduction

Duality rotations for massless spin 2 fields have recently been shown to be symmetries of
the action in the context of a Hamiltonian formulation involving suitable potentials that
arise when solving the constraints [. This symmetry can be extended to higher spin
fields ] and also to the case of spin 2 fields propagating on an (A)dS background g, [,
but does not survive gravitational self-interactions [j.

The spin 2 result generalizes the so-called double potential formalism for spin 1 fields [d,
[, which has been extended so as to include couplings to dynamical dyons by using Dirac
strings [§, fJ. In the original double potential formalism, Gauss’s constraint is solved in
terms of new transverse vector potentials for the electric field so that electromagnetism
is effectively formulated on a reduced phase space with all gauge invariance eliminated.
Alternatively, one may choose [[Ll(] to double the gauge redundancy of standard electro-
magnetism by using a description with independent vector and longitudinal potentials for
the magnetic and electric fields and 2 scalar potentials that appear as Lagrange multipliers
for the electric and magnetic Gauss constraints. In this framework, the string-singularity
of the solution describing a static dyon is resolved into a Coulomb-like solution. Further-
more, magnetic charge no longer appears as a topological conservation law but as a surface
charge on a par with electric charge.

The aim of the present work is to apply the same strategy to the spin 2 case. Doubling
the gauge invariance by keeping all degrees of freedom of symmetric tensors now leads to a
second copy of linearized lapse and shifts as Lagrange multipliers for the new magnetic con-
straints. As a consequence, the string singularity of the gravitational dyon, the linearized
Taub-NUT solution is resolved and becomes Coulomb-like exactly as the purely electric
linearized Schwarzschild solution. Furthermore, as required by manifest duality, magnetic
mass, momentum and Lorentz charges also appear as surface integrals.

Our work thus presents a manifestly duality invariant alternative to [L1]] where the
coupling of spin 2 fields to conserved electric and magnetic sources has been achieved in a
manifestly Poincaré invariant way through the introduction of Dirac strings.

Recent and not so recent related work includes for instance [[3-[R4] and references
therein.

In section ], we briefly recall the two ingredients needed for our formulation: the
Hamiltonian description of spin 2 fields propagating on Minkowski spacetime and the de-
composition of symmetric tensors into their irreducible components, giving rise to the
reduced phase space description of linearized gravity.

Our analysis starts in section [J with a degree of freedom count that shows that the
phase space of duality invariant spin 2 fields with doubled gauge invariance can be taken
to consist of 2 symmetric tensors, 2 vectors and 2 scalars in 3 dimensions. We then define
the metric, extrinsic curvature and their duals in terms of the phase space variables and
propose our duality invariant action principle with enhanced gauge invariance. We proceed
by identifying the canonically conjugate pairs and discuss the gauge structure, Hamiltonian
and duality generators of the theory. In the absence of sources, we then show how the



generators for global Poincaré transformations of Pauli-Fierz theory, reviewed in detail in
appendix [A], can be extended to the duality invariant theory.

The coupling to external electric and magnetic sources is discussed in section j. The
equations of motion are first solved in the simplest case of a point-particle dyon sitting
at the origin. They are Coulomb-like without string singularities. By identifying the
Riemann tensor in terms of the canonical variables and computing it for this case, we show
in appendix [B that this solution indeed describes the linearized Taub-NUT solution.

In section ] we discuss the surface charges of the theory and show that they include
electric and magnetic energy-momentum and angular momentum. Because of the non-
locality of the Poisson structure, we proceed indirectly and show that the expressions
obtained by generalizing the surface charges of Pauli-Fierz theory in a duality invariant way
fulfill the standard properties. Finally, we investigate how the surface charges transform
under a global Poincaré transformation of the sources.

2. Preliminaries

2.1 Canonical formulation of Pauli-Fierz theory

The Hamiltonian formulation of general relativity linearized around flat spacetime is

SpE [hmn, T N, n] = /dt[/dszn (ﬂmnhmn —n""Hm —nH) — pr] , (2.1)
with
mn 3 mn 1 2 1 T mn
HPF[hmmﬂ' ] = A’z ( 7" T — 577 + Za R0 b, —
1 1 1
—=O0mh™ 0" hpy, + =0 hO" hppyy — =0 hOm A |, (2.2)
2 2 4
and
Hi = —20"Tpn, Hi = Ah—0"0"hmn. (2.3)
Here, indices are lowered and raised with the flat space metric d,,, and its inverse, h = h"™,,,
m = ™, and A = 9,,0™ is the Laplacian in flat space. The linearized 4 metric is
reconstructed using hgg = —2n and hg; = n;.

2.2 Decomposition of symmetric rank two tensors
Symmetric rank two tensors ¢p,, decompose as [P5, Bq]
¢7Lnn = 8m¢n + 8n¢ma
1
mn = 5 (Omn = Om0p) V7 (2.6)

Here qﬁ?fl is the transverse-traceless part, containing two independent components. The

tensor (b%n contains the trace of the transverse part of ¢,,, and only one independent



component. The last three components are the longitudinal part contained in gbﬁm. In terms
of the original tensor ¢, the potentials for the longitudinal part and the trace are given by

U = A1 (8"¢mn — %A—lamakalml) : (2.7)
YT = A7 (o= AT b)) | (2.8)
while the transverse-traceless part is then defined as the remainder,
rn = Gmn = O = Opon- (2.9)
This implies

A2¢TT A2¢mn - Aamak(bkn - Aanak(bkm

mn

- %A(émnA — OpOn) b + %(@WA + 00 )% iy, (2.10)
/ Br g™ AZYIT = / A3z (Aw"mmn + 20m ™" A oy — %(m)?
+ O™ AP + %amanqam"aka@“) . (2.11)

Alternatively, one can introduce the local operator P77

(PTT¢) mn %[Empqap(A(bqn - anar(bqr) + enpqap(A¢qm - 8m8r¢qr)], (212)

which projects out the longitudinal and trace parts and onto a transverse-traceless tensor,
TT _ pTT (TT s TT NTT
In addition,

(PTT(PTT¢)) _ _A3 Zjnjr: (214)

mn

As a consequence, the transverse-traceless tensor ¢11' can be written as P77 acting on a

TT

mn?

suitable potential

S = (PTTET), L = A (PTTY) 215)
The operator P17 is related to the way the Hamiltonian constraint H = 0 is solved by

expressing the metric hy,, in terms of superpotentials in [[. When acting on a transverse-
traceless tensor, the two terms of (R.13) involving 9,¢%" can be dropped. In this case, P77
is related to the generalized curl [B, [,

1
(O¢)mn = §(€mpqap¢qn + €npgd” 1), (2.16)

(PTTe™™) = A(00"T) . (2.17)



A second operator that projects out the longitudinal and trace parts and onto a transverse-
traceless tensor is QTT,

(QTT6) = Conpqenrsd?0" AT — %(5MA 0D (DG — PTG, (2.18)

In this case,

(Q"(Q"9)),,, = Ay, (2.19)
so that the transverse-traceless tensor ¢1I can be written as Q77 acting on another po-
tential x 2T

1 (1)

X = ATH(QTTg) . (2.20)

mn’

In turn this operator is related to the way the constraints H,, = 0 are solved by expressing
the momenta 7" in terms of superpotentials in [[]l. When acting on a transverse-traceless
tensor, the last term can again be dropped and it is related to the square of the general-
ized curl,

(QTTquT) - A (O(O@TT)) — _A2 TT (221)

mn mn mn*

The elements of the decomposition are orthogonal under integration if boundary terms
can be neglected,

and the operators P77, Q77 O are self-ajoint, e.g.,

2.3 Reduced phase space for linearized gravity

For completeness, let us briefly recall 25 the reduced phase space associated with the
Pauli-Fierz action. Because of the orthogonality of the decomposition, the canonically
conjugate pairs can be directly read off from the kinetic term and are given by

(R (@), T2 (@), (e (@), 7 (W), (i (2), 75 (1)) (2.24)

The first class constraints H,, = 0 = H are equivalent to 7T]Zl = 0= hl,. They can be gauge
fixed through the conditions hZ =0 = 77521. The reduced theory only depends on 2 degrees
of freedom (per spacetime point), the transverse-traceless components (h1Z(Z), 7AL.(y))
and the reduced Hamiltonian simplifies to

1
HE = / B G%ﬂﬂ + Z&hﬂﬁ"h?%). (2.25)



3. Action and symmetries

3.1 Degree of freedom count

In order to be able to couple to sources of both electric and magnetic type in a duality
invariant way, we want to keep all components and double the gauge invariance of the
theory. With 2 degrees of freedom, # dof = 2, and 8 first class constraints, # fcc = 8, we
thus need 10 canonical pairs, # cp = 10, according to the degree of freedom count [27]

2% (#cp) = 2% (F# dof) + 2 * (# fee). (3.1)

This can be done by taking 2 symmetric tensors, 2 vectors and 2 scalars as fundamental
canonical variables,

24 = (HS

mn?

A% C%). (3.2)

3.2 Change of variables and duality rotations

For a = 1,2, consider h%,, = (hyn, hE,) and 77" = (7’5", 7™") and the definitions

R =€mpg®” Hy 4 €ppg@ H ) + 0, AL + 8, AL, + %(%nA — 0, C°
=20 (PTTH®)  + Op (A enpg0? 0, H' + A7)
B (A @0, HYT 4 AL) + %(&rmA _ 9,0,)C", (3.3)
T =€mpq€nrsOPO" H — 0,,0" HE, — 8,0" HE, — (6n A — 0nOp ) H® + 6,080 HY

m

1
=ATH(QTTH),,, — Om0 H\y = 000" Hy = 5 (Oun S = OmOn) H'

1 — T a
+54 Y(6mn A + 00, ) 0P 0" HY,
— _ AHC, . (34)

The relations for h,,,[H*, A', C'] and 7™"[H?] are the local change of coordinates from the
standard canonical variables of linearized gravity to the new variables. They are invertible

and, as usual, the inverse is not local. The relations for h2,, = kL, 7" = 7" serve to

mn?
denote convenient combinations of the new variables in terms of which expressions below
will simplify. As indicated by the notation, the infinitesimal duality rotations among the

fundamental variables are
SpHE = € Hypp, SpA%, = €™ Ay, 5pC* = €C,,. (3.5)

Here, €, is skew-symmetric with €10 = 1 and indices are lowered and raised with d4
and its inverse. Duality invariance will be manifest if all the internal indices a are con-
tracted with the invariant tensors dup, €45. Since h% ., 7" are linear combinations of the
fundamental variables, they are rotated in exactly the same way. We can thus consider
hZ, = hE . 7" = amn as the dual spatial metric and the dual extrinsic curvature in the

linearized theory.



3.3 Action principle and locality

The duality invariant local action principe that we propose is of the form

SalA, ue] = / B (aal2]#4 — utal2]) — / dt H2), (3.6)

where u® denote the 8 Lagrange multipliers and -, the constraints.

Let us stress here that we use the assumption that the flat space Laplacian A is in-
vertible in order to show equivalence with the usual Hamiltonian or covariant formulation
of Pauli-Fierz theory and also to disentangle the canonical structure. The action princi-
ple (B.6) itself and the associated equations of motion will be local both in space and in
time independently of this assumption. The theory itself is not local as a Hamiltonian
gauge theory (see e.g. [Bg], section 12) because the Poisson brackets among the canonical
variables will not be local.

3.4 Canonical structure

The explicit expression for the kinetic term is
4t = e HO™ <(7>TTHb)mn L0, AAL + 0,0 +
+%(6m"A - ama")ACb>. (3.7)
The canonically conjugate pairs are identified by writing the integrated kinetic term as
(/&xmgA:/ﬁ%(—2Aﬁnﬁﬂm"H£?+mM%H?Wﬁ
— 2AD, Hmm A2 — %A(AH% — 8,0, HF)C + %A(AH}F - apaqH}Pq)C2>. (3.8)

This means that the usual canonical pairs of linearized gravity can be choosen in terms of
the new variables as

(T (@), —22 (0H3)" () (cl(x), AT — 0,0, H") (y)> ,
(Ah@). 200, 1), (39)
The 4 additional canonical pairs are
(A2.(2), —200,H}™(v)). <C2(x), %A(AH}F _ apaqH;pq)(y)) (3.10)
In particular, it follows that

1
{fn (), 7™ (9)} = € (83,07, + 03,0,)0) (). (3.11)



3.5 Gauge structure

The constraints v, = (Ham, Ha1 ) are choosen as

Ham = —2€0"18,, = e A" HE,,., (3.12)
Hot = Ahg — 00, K™ = A%C,. (3.13)

They are first class and abelian

{Vasv8} = 0. (3.14)

The constraints H1,,, H1 | are those of the standard Hamiltonian formulation of Pauli-Fierz
theory expressed in terms of the new variables. The new constraints ’yﬁ =0 are

Hom = 0="H,. (3.15)

They are equivalent to 9"H),, = 0 = C? and are gauge fixed through the conditions
A2, = 0= H} . This does not affect 72!, while hl,, is changed by a gauge transformation.
The partially gauge fixed theory corresponds to the usual Pauli-Fierz theory in Hamiltonian
form as described in section P.].

More precisely, the observables of a Hamiltonian field theory with constraints are
defined as equivalence classes of functionals that have weakly vanishing Dirac brackets
with the constraints and where two functionals are considered as equivalent if they agree
on the surface defined by the constraints (see e.g. [2]). The new constraints together with
the gauge fixing conditions form second class constraints. The Dirac bracket algebra of
observables of this (partially) gauge fixed formulation is isomorphic to the Poisson bracket
algebra of observables of the extended formulation on the one hand, and to the Poisson
bracket algebra of observables of Pauli-Fierz theory on the other hand.

In the same way, the original constraints Hy,, = 0 = Hj, are equivalent to 0" H2,, =
0 = C' and are gauge fixed through A2, = 0 = H2I | leading to the completely reduced
theory in terms of the 2 transverse-traceless physical degrees of freedom.

If e* = (£ ¢%4) collectively denote the gauge parameters, the gauge symmetries are
canonically generated by the smeared constraints,

6.2 = 24 Te]}, Te] = /d3$7aea, (3.16)
so that
S HE, = AT P (G A = 0n0n)&,  0-AL, =&, 5:C° =0, (3.17)

which implies in particular

Ol = Om&i + On&lhy, O, = (8™ A — 0™0™)& (3.18)

mn

Note that a way to get local gauge transformations for the fundamental variables is
to multiply the constraints by A, which is allowed when the flat space Laplacian is in-
vertible. This amounts to introducing suitable potentials for the gauge parameters and
Lagrange multipliers.



3.6 Duality generator

The canonical generator for the infinitesimal duality rotations (B.5) is
D= / Bz ( — (PTT H®), H™ + 200, HI™ A%,
1
- §A(AH“ - amanH&n)Ca>
~ — / B PTT(H)p H™. (3.19)
The duality generator is only weakly gauge invariant,

{Ham, D} = €M%, {Har,D} = eayH’,. (3.20)

On the constraint surface, it coincides with the generator found in [[[] up to normalisation,

where it has been cast in the form of a Chern-Simons term.

3.7 Hamiltonian

In terms of the new variables (B.3)-(B.4), the Pauli-Fierz Hamiltonian reads

amn

Hpp = / 3 (Hamm?HTT — 200" H? 0, H*™ —

1 1
—9"O*H* ,AH? — 5(8T85H38)2 + §A01A2(Jl>, (3.21)
where one can use (R.I() to expand the first term as a local functional of H? .
The local Hamiltonian H = [ d3x h of the manifestly duality invariant action princi-

ple (B.6) is

H= / Bz <H‘"”"A2HTT —2A0"HE, 0, HE"—

— 0"O°HY.AH, — %8’"85H;}88k8lH§l + %AC’“AQC’G>
_ / P <AH;‘,‘WAH;”" - %AH“AHQ + %AC’“AQC’G>. (3.22)

It is equivalent to the Pauli-Fierz Hamiltonian since it reduces to the latter when the addi-
tional constraints 0" HY,,, = 0 = C? hold. Note that the terms proportional to 9" H%  and
C® may be dropped since they vanish on the constraint surface, H ~ [ dBx HmA2HTT

amn*

The Hamiltonian is gauge invariant on the constraint surface,
(H.11g) = [ dargornet. (3.23)

In order for the action (B.6) to be gauge invariant, it follows from (B.23) that the
Lagrange multipliers u® need to transform as

5€uam — éam _ 8m£al’ 5§’LLCLJ_ — éaJ_‘ (324)



3.8 Poincaré generators

Consider now a symmetry generator of Pauli-Fierz theory. It is defined by an observable
K[h', 7] whose representative is weakly conserved in time,

0

5K+ {K, Hpr} =~ 0. (3.25)
Since the new Hamiltonian differs from the Pauli-Fierz one by terms proportional to the
new constraints v = 0 given explicitly in (B.17), we have

H = Hpp + /d3x N (3.26)

Furthermore, since K, when expressed in terms of the new variables, does not depend on
H%,H}, so that {K, f d3x ’yg kA} ~ 0 in the extended theory, it follows that K is also
weakly conserved and thus a symmetry generator of the extended theory,

2K +{K,H} ~0. (3.27)
ot

Consider then the Poincaré generators Qa(w, a) of Pauli-Fierz theory as described in
appendix [A. When expressed in terms of the new variables, they are representatives for
the Poincaré generators of the extended theory. Indeed, we just have shown that they are
symmetry generators, while we have argued in section B.J that their Poisson algebra is
isomorphic when restricted to their respective constraint surfaces.

Since symmetry generators form a Lie algebra with respect to the Poisson bracket,
{Q¢(w,a), D} is a symmetry generator. In much the same way as for the Hamiltonian, we
now want to show that one can find representatives for the Poincaré generators that are
duality invariant,

{QCL})(W7Q)7D} =0, (328)

by adding terms proportional to the new constraints.

The first step in the proof consists in showing that the reduced phase space generators,
i.e., the generators Qg (w, a) for which all variables except for the physical H{.» have been
set to zero, are duality invariant. All other contributions to Qg(w,a) are then shown
to be proportional to the constraints of Pauli-Fierz theory. Both these steps follow from
straightforward but slightly tedious computations. For the generators of rotations and
boosts for instance the computation is more involved because the explicit z* dependence
has to be taken into account when performing integrations by parts.

In terms of the new variables, the terms proportional to the constraints are bilinear
in (ht,A4?%), (7%, A42), (h',C') and (7?,C'). The duality invariant generators Q2 (w,a)
are then obtained by adding the same terms with the substitution h' — h2, A2 — — A,
72 — —n! and C' — C?, while keeping unchanged the terms involving only the physi-
cal variables Hf..

As a consequence, the duality invariant Poincaré transformations of h', 72 are un-
changed on the extended constraint surface. They are given by (JA.31)—(A.39) where

— 10 —



¢t = —w0a” +a and ¢ = —wi,2” + a'. Because of (B-23), those of h?, —n! are ob-
tained, on the contraint surface, by applying a duality rotation to the right hand-sides
of (A31)(A33).

An open question that we plan to address elsewhere is the construction of the canonical

generators for global Poincaré transformations in the presence of both types of sources that
will be introduced in the next section.

4. Coupling to conserved electric and magnetic sources

4.1 Interacting variational principle

We define
8m = n[rln = h?nov 80 = _2na7 (4'1)
and consider the action
1
A o apv J
(T = 4.2
Stz u*; ] 167TGSG+S , (4.2)

with S given in (B.6) and the gauge invariant interaction term

1
ST = / d'x S Te" Ty =0, (4.3)
where T3 = (TH,©M) are external, conserved electric and magnetic energy-

momentum tensors.

4.2 Linearized Taub-NUT solution

We start by considering the sources corresponding to a point-particle gravitational dyon
with electric mass M and magnetic mass N at rest at the origin of the coordinate system,
for which

TH (x) = 0HY M6 (%), M, = (M, N). (4.4)

In this case, only the constraints (B.13) are affected by the interaction and become

Hoy = 167G M, (). (4.5)

They are solved by

4
AC® = GM*° <;>, (4.6)
where r = /x'x;. It is then straightforward to check that all equations of motions are
solved by
1
0" = GM*(2r), ”“:GM‘I(‘;), Afy =" = Hj, =0,
he = GM® <5mn + xmf") A — (4.7)
r

— 11 -



The usual Schwarzschild form is obtained after a gauge transformation with parameter
£am = GM“(—%%), £+ = 0. The solution then reads

1 1 m
C*=GM*(2r), n“zGM“(— ;), A%zGM“(—é—xr >, n* =H; =0,
a a Z:me” mn
hmn:GM< = > T = 0, (4.8)

By computing the Riemann tensor in terms of the canonical variables in appendix [B, we
show that this solution describes the linearized Taub-NUT solution. It resolves the string
singularity of the linearized Taub-NUT solution in the standard Pauli-Fierz formulation.
In spherical coordinates, the latter can for instance be described by

2GM
- GT = hoo, hop = —2N (1 — cos 6), (4.9)

and all other components vanishing, with a string-singularity along the negative z-axis.

5. Surface charges

5.1 Regge-Teitelboim revisited

Because the theory is not local as a Hamiltonian gauge theory, the analysis of surface
charges cannot directly be performed as in [29, B{]. We thus revert to the original Hamil-
tonian method of [@, @] and adapt it to the present situation of exact solutions, where
there is no need to discuss fall-off conditions.

Let L = a2 —h — you®, with h a first class Hamiltonian density and 7, first class
constraints and define ¢ = (2, u®). Even though it is not so for our theory, let us first run
through the arguments in the case where one has Darboux coordinates for the symplectic

structure, i.e., when o4 = g‘;ﬁ — g‘;—g is the constant symplectic matrix. We furthermore

suppose that we are in a source-free region of spacetime. In this case one can show that

524

0Ly

02 o

+ d.u” = —0p (’yaaa) — 8,-32, (5.1)
where s = s[z,u] vanishes when the Hamiltonian equations of motion, including con-
straints, are satisfied, st ~ 0. This identity merely expresses the general fact that the
Noether current s£ associated to a gauge symmetry can be taken to vanish when the equa-
tions of motions hold (see e.g. [R§], section 3), st ~ 0, and that the integrand of the
generator is given by (minus) the constraints contracted with the gauge parameters in the
Hamiltonian formalism, s = —v,£%. An explicit expression for s¢ in terms of the structure
functions can for instance be found in appendix D of [B{]. Using integrations by parts, one
can write the variations of the constraints under a change of the canonical coordinates z*

as an Euler-Lagrange derivative, up to a total derivative,

« 5 OCEa )
5, (7ae®) = 5ZA% — Ok (5.2)

— 12 —



where k! = k![6z, z] depends linearily on 624 and its spatial derivatives. Taking the time
derivative of (b.2) and using a variation d, of (b.1)) to eliminate 9yd,(7,e®), one finds

, . 0(Vat®) 0Ly o OLH
. v vy A A
0i 0k — dyst) = Do <5 — >+5¢ (5 i+t ). (5.3)
One now takes £ to satisfy 5,224 = 0 = §.,u®. Note that in the case of Darboux co-
ordinates, this also implies that ( ) = 0. If furthermore 22, u% is a solution of the

Hamiltonian equations of motion, the r.h.s. of (b.3) also vanishes. By using a contracting
homotopy with respect to d¢' and their spatial derivatives, one deduces that

oKL, [62, 2] = (0p5L,)[2s] — KL

es )

(5.4)

where k:[” - k‘[” [6¢, ¢s] depends linearily on ¢’ and their spatial derivatives. Finally,
when (525 , oud satisfy the linearized Hamiltonian equations of motion, including constraints,

we find from (f.9) and (5.4) that
Okl [025,25) =0, Dok’ [0z, 25] — 8;tl9] = 0. (5.5)

At a fixed time t = 20, consider a closed 2 dimensional surface S, 85 = 0, for instance a
sphere with radius r and define the surface charge 1-forms by

§O.. (524, 2] = 7{ i K (57, 2], (5.6)

S

where d?z; = %eijkdzrj A dzF. The first relation of (b-5) implies that the surface charge
1-form only depends on the homology class of the closed surface S,

74 Pt K [520, 25) = }[ Pty K525, 24). (5.7)
Sl SZ

Here S1 — Sy = 0%, where X is a three-dimensional volume at fixed time ¢ containing no
sources. For instance, the surface charge 1-form does not depend on r. The second relation
of (5.5) implies that it is conserved in time and so does not depend on ¢ either,

%ﬁges (020, 2] = 0. (5.8)

The question is then whether these charge 1-forms are integrable, see e.g. [B3, B4, B{] for a
discussion.
5.2 Linear theories

In the case of linear theories, the latter problem does not arise and the whole analysis
simplifies. One can replace (5.9) by

« 6 Olga )
Vat® = ZA% — 9k, (5.9)
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where 6/024 are the (spatial) Euler-Lagrange derivatives and k[z] depends linearily both
on the phase space variables z# and their spatial derivatives and on the gauge parameters.
One then uses (p.1]) directly to eliminate 9y(74£®) from the time derivative of (p.9), to get

o 3(a 3L oL
ai[aok;—sg]:ao[/* (Z; )}M A et (5.10)

For gauge parameters ¢ that satisfy
6.2 =0=06.u", (5.11)
one then arrives at
OikL [2] = —7ac®,  Ookl[z] = st [z,u] — @kgj}. (5.12)

For a solution 2%, u%, the surface charges
e, [25] = j{ APz kL [24], (5.13)
S

are again independent of r and t.
When this analysis is applied to the Hamiltonian formulation of Pauli-Fierz theory,
one finds the standard expressions

ki[z] = 26,m™ — £H(6™0" — 6™ 0™ h + B (670 — ™1™ L, (5.14)
while the only solutions to (p.11]) are §us = —wpux” + ay, for some constants a,, wy,,) =

—w[yy- In this context of flat space, Greek indices take values from 0 to 3 with p = (L, 7).
Indices p are lowered and raised with 7, = diag(—1,1,1,1).

5.3 Electric and magnetic energy-momentum and angular momentum surface
charges

The previous analysis is not directly applicable to our case since we do not have Darboux
coordinates and the Poisson brackets of the fundamental variables are non-local. In partic-
ular, the gauge transformations (B.17) do not allow for non trivial solutions to §. 24 = 0.
We also have to keep the sources explicitly throughout the argument, because A~! applied
to localized sources will spread them out throughout space and we need to check that we
are only dropping terms that indeed vanish outside of the sources.

In the presence of the sources, the constraints v = (HZ,,, H/ ) are determined

H = Ham — (167G)TS,,,  H], =Har — (167G)TY,. (5.15)
Instead of (B.9), we can write

VLT = (@ET A T Neap Ty + (67 A = O TNE han — DikL]2]
—(167G)(T2,,£¥™ + T ¢, (5.16)

— 14 —



where
ki[2] = 262 eqpm”™ — €% (8™ — 5™ 0™ hamn + hamn (677 — §MO™)EM. (5.17)

Consider now gauge parameters €(x) satisfying the conditions

om ;zn+an gm:O:a ;zm_am ;zJ_7
3 3 o€ £ (5.18)
(™A — 9mOM) eIt = 0 = 9ot
The general solution to conditions (f.1§) can be written as
s = —wit” + ag, (5.19)
for some constants ay, wﬁw] = _Wﬁ/ o It follows in particular that the surface charges
Q. 2] = — jq{d%-%i (2] (5.20)
653_167TGS i ey |%s]y .

do not depend on the homology class of S outside of sources.
Assuming A invertible, the equations of motion associated to L = ﬁﬁ]{ + L7
imply in particular that

dohl, = Omnl + 9ynl, — 2’ AHy + €06, AH,,
+(167rG)e“b<A_1 (OTy) 0+ %A‘28menpq8p8kaq+ %A‘28nempq8p8kaq> ,
€abO0mony = (PTTH,)  + (87G) Ty —
—%(5m”A —omo") <2na + %AC’CL). (5.21)
By direct computation using the equations of motion, one then finds
OokL, [25] = (167G (&, T4") — kL2, us), (5.22)
with
k2, ] = <2n;aﬂ'ggl + 09I + 0 (2% + %A0a> +&2,,€mP0,0' H,
T OHL, + 0V H, 4 2w RO HY 4 167TGe“beiqu_1Tgé8m£js
+87TG6abEmpqapA_2aiTg;]am§;_s — (i J)>
+eidF [wg <2na + %AC’G> — E"(AH gt — Om0" Hap)

—16mGe® AT Ty i bk, 4+ 8TGe® (ATITI + A720™0 Tyt ) O |, (5.23)

where w? = w™ ey, The surfaces charges (f.2(0) are thus also time-independent outside
of sources.
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Finally, the surface charges are gauge invariant,
KL [6,2] = 0;rL) (5.24)
Pl = <2§aaaz + 29l 4 eIyt — (i — j)> — 26kt (5.25)

Defining

Qe [2] = %wZVJé‘” —a, P}, (5.26)

we get for the individual generators
(167G)P+ = — jé . d?z,, OMAC, = - xp (R — 0™hy) , (5.27)
(167G)P" = 2 - Az, ey AH™ = —2 - A2z, €™, (5.28)
(167G)JH = 2 jq{ e (AHbmka;l - AHbmla:k) (5.29)
— 9 7{ e (wbmkxl - Wbmla;k> , (5.30)
(167G)J 1k = . &y (A(Jaam’f - 8mAC’a:nk> (5.31)
- jq{ _dy, [(anh;m — Mhy) zk — BTE 4 haamﬂ . (5.32)

The only non-vanishing surface charges of the dyon sitting at the origin are
Pt = M,. (5.33)

As expected, they measure the electric and magnetic mass of the dyon.
(i

For later use, we combine %2, ke’ Jinto the n — 2 forms k:[z,u] through the following
expressions in Cartesian coordinates,

ke = KB an2g k0D = EE (5.34)

1

- meﬂlmukl’kﬂmmdxukH cooda™, (5.35)

n—k
d Ly ... pu

where €,4+5 is completely skew-symmetric with €p123 = 1 and the wedge product between
the differentials is understood. Equations (f.16) and (5.23) can then be summarized by

dk., ~ —(167G)Tz,, T., =TrEYdz,, dT:, =0, (5.36)

where closure of the n — 1-forms 7T, follows from the conservation of the sources, the
symmetry of the energy-momentum tensor and (p.19).

Remark. In fact we have checked here that the standard expressions for surface charges
in Pauli-Fierz theory, when extended in a duality invariant way, have all the expected
properties. More interesting would be to develop the theory of surface charges from scratch
in theories where the Poisson brackets among the fundamental variables are not local to
see if the ones we have found exhaust all possibilities. From the preceding discussion
we see that pseudo-differential operators will play a crucial role for a discussion of these
generalized conservation laws, as they do in the discussion of ordinary conservation laws
for evolution equations of the Korteweg-de Vries type for instance.
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5.4 Poincaré transformations of surface charges

Suppose now that zZ', u solve the equations of motions for the conserved sources T4 ().
Let 24, u/* be the solution associated to new sources To" (z) related to T4” (z) through a

(proper) Poincaré transformation, a’* = A*,z"” 4+ b* with |A| = 1,
T (2') = Ao AV g T2 (). (5.37)

For instance, starting from the conserved energy-momentum tensors (f.4) of a dyon sitting
at the origin with world-line 2# = §}j's, one can obtain in this way the conserved energy-
momentum tensors of a dyon moving along a straight line, 2z’ = uts + a* with ut,a*
constant, ufu, = —1 and s the proper time,

dz'* utu

T (') = Myu” / dA6W (' — 2/ (N)) = Ma75<3> (2" — 2" (20)). (5.38)

when A*g = ut.

Assume then that the &‘fs(az) transform like vectors
W (2)) = A€, (2) = —(Awa A1) + (Awa A7 4 Aay)Y, (5.39)
which implies that the T;, are closed Poincaré invariant n — 1 forms,

8/,5 (2, dx") = T, (x,dr). (5.40)

We can then use the following variant of the tube lemma. Suppose that at fixed time 2°,

T (2)€% (z) has compact support and that there exists a tube, i.e., a space-time volume
W connecting the hypersurfaces Q : K = 20 and ' : K = 20 = A%,2” + t° with K a
constant such that, OW = Q' — Q + 7. If nothing flows out through 7, fT 1., = 0, it
follows from Stokes’ theorem and (p.40) that

/TES :/ T.. :/ 7. (5.41)
Q / !

If we now compute the surface charges for a large enough sphere S at fixed 2 containing

both T (2)¢% (x) and T/%(x)&/% (z), it finally follows from (F.16) or (5.34) that the

A

surface charges evaluated for the new solutions z’* are obtained from those of the old

solutions z# through

Qe’s [Z;] =0, [Zs]' (5'42)
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A. Poincaré generators for Pauli-Fierz theory

In this appendix, we assume that the canonical variables vanish sufficiently fast at the
boundary so that integrations by parts can be used even if the gauge parameters do not
vanish at the boundary.

In the Hamiltonian formulation of general relativity [RH], the canonically conjugate
variables are the spatial 3 metric g;; and the extrinsic curvature 7. The constraints are
explicitly given by

Hi=— (Wmn”mn - %W2> ~ VR,  Hi=-2V;,. (A1)

The associated generators of gauge transformation H[¢] = [d3z (H L&+ H,fi) satisfy
the so-called surface deformation algebra [B3, B6],

{H[¢], H[n]} = HI[¢ n]sp], (A.2)
€. n5p = 0™ — nioret, (A.3)
€.l = 9" <§L0jnl - nL0j§L> + o —n9;¢". (A.4)

When the parameters f, g of gauge transformations depend on the canonical variables, ([A.2)
is replaced by [B7]

{H[f], H]gl} = HI[K], (A.5)
k= [fa g]SD + 5gf - 5f.g —m, (AG)
mt = [ @ [ @) (P @OE)] (A
mi= [ @ [{(#. g P PP @OPE)] @
where
0¢gij =Vi&j + V& + 2Dy et (A.9)
1
Diji :m(gikgjl + 9jkgil — 9ij9k1), (A.10)
Sem = — ¢t /g( RV — LiR) + igij g — S
2 2\/9 2
- 2i <wimw% - 1#‘%) +/g(VIViEt — v, vmet)
Nz 2
+ Vi (TIE™) — Vo &7 — V8 7™ (A.11)
Let g;; = 6;; + hij and consider the canonical change of variables from gij,ﬂkl to
A= (hij, 7). We will expand in terms of the homogeneity in the new variables and use

the flat metric d;; to raise and lower indices in the remainder of this appendix. Furthermore,
Greek indices take values from 0 to 3 with o = (L, 4). Indices are lowered and raised with
N = diag(—1,1,1,1) and its inverse. Let &, = —W,,.
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To lowest order, i.e., when g;; = d;;, the vector fields
Ep(w,a)t = —(Z“izni +a*, (A.12)

equipped with the surface deformation bracket form a representation of the Poincaré

algebra [B1],

Ep(@1, 1), Ep(Ba, @2)|) = Ep (@1, o), &1 — Dot )- (A.13)

For the gauge generators, we find H[¢] = HD[¢] + HO[¢] + HO[€] + - - -, where

HWg] = / P (<20 + (@D hs; — An)EY) (A.14)

_ / P (HDem + 1Dt (A.15)

are the gauge generators associated to the constraints (R.J) of the Pauli-Fierz theory.
Because

HIg, nlsp) = HOE,m$D] + H[le, i) + HOE mD) + 0(=%), (A.16)

we have to lowest non trivial order
{HD18, BOm} = HO[E, ) (A.17)

This means that H (2)[ | are observables, i.e., weakly gauge invariant functionals.
One can use integrations by parts to show that H( [{ p] = 0. It then follows that

{Hlep] Hnel} = { HO[gp), B e} + O(?). (A.18)

For vectors &p(@,a),np(6,b) of the form (A.19), the first term on the r.h.s. of (A.16)
vanishes on account of ([A.13). To lowest non trivial order, (A.9) then implies

{HOep], HOMp]} = HOigp,np ] + HO [, npl ). (A.19)

The generators H® [§ p] equipped with the Poisson bracket thus form a representation of
the Poincaré algebra when the constraints of the Pauli-Fierz theory are satisfied. Explicitly,
the term proportional to the constraints is

H(l)[[f,ﬂ]ég] = —2/d3$ Frh™® (E505, — npwy), (A.20)
while

g 1
Hf) =i — 571'2
1 kpii _ Lo pking 1 i _ Loy o
+ Zakhija hY — gakh & hij + §8ih8jh] — Z@ha h

+ 0, (%h@lh — R0 b — %h@ih“ — h'o;h + ghlﬂ‘aihij + %hijaihﬂ> . (A22)
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Isolating terms proportional to the constraints, we find

H®[g) = / &’z (Hmh’m& + %Hh§l> + HP[g], (A.23)
7:[(2) = ij(a'hkz’ + Okhji — Oihji), (A.24)
H(z) =t m] - %7‘(’2

+ Za,ghija’w'ﬂ' - %akh’“'ajhij + iaihaih

+ 0, <—h”8’hij — h”&-h + ;hljalhij + §hijalhﬂ> R (A.25)
with H?[¢] = [ dx (7'_(2(2)51' + ﬂf)fL) On account of (A.17) and the analog of (A.F) for
H(O )[f], it follows that

{A@1ep], AD[p]} ~ ADigp,npl) (A.26)

where ~ means an equality up to terms proportional to the constraints H,,, H | of Pauli-
Fierz theory. Note that the functionals H® [¢p] and H®[¢p] generate transformations of
the canonical variables that are equivalent because they differ at most by a gauge trans-
formation of the Pauli-Fierz theory when restricted to the constraint surface.

The generators for global Poincaré transformations of Pauli-Fierz theory can then be
identified as

w/u/JgV - CLng = ﬁ(2) [SP(&afd)]

Qc(w,a) = %

~ ~ ~ 0
Oy = Wuyy,  GL = a1, G =a;+wiT . (A.27)

Indeed, differentiating (A-19) with respect to b gives
D) S
{H,Q¢(w,a)} = EQG(M’Q) + 2/d3x 8]7TjithUJJ_k. (A.28)

When combined with (A-19) and (A.27), this shows that, on the constraint surface, the
generators Qg (w,a) are conserved and satisfy the Poincaré algebra

Flnally, we can further simplify the explicit expression for H? [5 p| by using linearity
of £p in z* and integrations by parts to show that

/ B HY / d*z [w Tij ——w + 8khwakh” akh’“'ajhij
+18ih8ih+81(h8ih” + R0 h;) | €B. (A.29)

The expansion of the gauge transformations ([A.9), (A.11)) gives to first order:

0)

50y = O+ 95y, 0w = (90 — A", (4.30)

5§1)hij = £kakhij + aifkhkj + 8j£khik + 271'@'ij‘ - 5ij7TfJ‘, (A.31)
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o7l = SO —§IAEE — 0, — 0,0 + hIAE

A 0TR Oy O™ + O (TTE™) — 7™ D& — T Oy &
+%ak§L [ — QRM — §IhkI 4 9B 4 5 (20, hF! — akh)]

J%SL {aiajh + AR — 9,0 W — 0,07 hF — U (AR — akalhkl)]. (A.32)

B. Riemann tensor and canonical variables

By following [fl, 1] (up to conventions), we show in this appendix that the duality rotations
that we have defined coincide on-shell with the standard simultaneous duality rotations
among the (linearized) Riemann tensor and its dual together with those for the electric
and magnetic conserved sources. We do this by showing how the covariant Riemann tensor
is expressed in terms of the canonical variables. This gives us the appropriate generalization
of the Gauss-Codazzi relations in the case of both electric and magnetic sources.

B.1 Covariant equations in the presence of magnetic sources

Our conventions are as follows. Define €,, 4, = €*1""" to be totally skew-symmetric with
€1..n = 1. The Levi-Civita tensor is €4, a,, = \/|9l€a;...a,,- Indices on this tensor are raised

with the metric, which implies that g% % = *—Z¢% % where o is the signature of the

A
E%

metric. Our convention for the dual is wq,..q,_, = %!wbl“'bpsbl,,,bpal___anfp.

In flat Minkowski spacetime, traces are taken with the flat Minkowsi metric 7,, =
diag(—1,1,1,1). Start with the “(linearized) Riemann tensor” R}Wp
symmetry properties skew-symmetry in the first and last pairs of indices,

o = Ruups, with only

Ruupo’ = _Ruupo = _R,uz/op- (Bl)

Its double dual (cf. MTW [Bg])

1
_EuuaﬁRaﬁﬂy(;E'y&pcra (B2)

G, o =Cvpo = 4

Kvp

has the same symmetry properties. If ordinary duals of R, and-&,» are taken with
respect to the last pair of indices, and we define

" 1

Ril/po = - Ruupcr = _ER,uuaﬁsaﬁpa, (B.3)
" 1

_G,szpo = - ‘Guupcr = EspuaﬁRaﬁpm (B.4)

we have

RY — Eab(*R)buupaa Wall

__abx
wvpo uvpo — € _Gbuupa- (B5)

The 36 independent components of the Riemann tensor can be encoded in

Rngn ’ 8m0n . (B . 6)
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The Ricci and Einstein tensors are defined as

a ac a ac a 1 a
Ry = R* . Gy =6 e = Ry — g R (B.7)

If electric and magnetic conserved sources are Ty" = (TH,©OM), with T3" = T," symmet-
ric, 9,T4" = 0, the duality rotations are defined by

RY, . = MYR,, ., T4, =M%T,,,
McaMcb = Oab- (B8)

For a tensor KM, let KM = KM — %n‘“’K.
It has been shown in [[[] that the duality invariant equations of motion are

G =8rGTH = R, + R

a
uvpo novp +R

=5
vpoy = BTG e“bsg,,pg Ty, (B.9)

They imply in particular that, on-shell, the tensors R}, ,, are symmetric in the ex-

change of pairs of indices and that RZV,GZV are symmetric. Furthermore, the Bianchi

“identities” read

aER%aﬁ + 8ﬁR$5m T &J‘R%ﬁe = 8rG eabeeaﬁp (aszfé - C%Tlfv)
= apRZ5PH = 81G (8572“/ _ a’yTZ&) . (B.10)

while the contracted Bianchi identities are

0,GH” = 0. (B.11)
Let
1
K)\T/wpa[ KT] = 5 [nupRza + nuaRZp - nuaRgp - nupRZU] -
R(I
% [Mupvo = Mo ) - (B.12)
Defining
Reo—pe g gy @ (B.13)
uvpo — luvpo 2 poaf3 pv bAT]> .
the tensor Epro is skew in the first and last pairs of indices, satisfies the cyclic identity
because e R, . = €7 p"%e“bspaagK )‘TWQB [Rprr] and, as a consequence, is also sym-
metric in the exchange of the first and last pair of indices, R}, ,, = R}, The associated
Ricci tensors RS, = RS, — %e“beygwaa is then symmetric, R’ = RZ,. It follows that
RS, = RE‘W) and Rﬁw] = %e“bewwaf&. The Weyl tensors are then defined as usual in
terms of R, B . B
Cgupa = RZVPU - K TMVPJ [RKTL (B14)

and satisfy all standard symmetry properties: skew-symmetry in the first and last pairs
of indices, tracelessness (because R%, = K *,,,[R$ ]), the cyclic identity (because
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eMPTK ’\TWPU [EiT] = 0), which implies also symmetry in the exchange of the first and
last pair of indices,

CZVpO’ = _Cg,upcr = _Cﬁucrm (B15)
Clie =0, €"7CH,,, =0, Ch.=Ch - (B.16)

As usual, the 10 independent components of the Weyl tensor can be parametrized by the
electric and magnetic components E% = (Epp, Bmny), symmetric and traceless tensors
defined by

1 b ik
Egln = Cngn = §6njk6a CbOTJn . (Bl?)
Putting all definitions together, the relation between the Riemann and Weyl tensors is
1 8
RZVpO’ = Cgupo' + KXFHVPU [R()I\T] + §€ab€pga5K)\Tm,a [Rb()\'r)] (B18)
T 1 T B
= Cpipo + KN o [RGp] + §eabsmﬁw o [Roar)- (B.19)

1

In particular, it follows that the 36 independent components of the Riemman tensor R, ,,

can be parameterized by the 10 independent components of the Weyl tensor C’ﬁu po» the 16
components of the Ricci tensor RiT, and the 10 components of R?M).
If we define
1 ik
Emn = Bogmpopmy: F" = 5" Rojjopg: - Rinn = Rny + En (B-20)

the parameterization consisting in choosing the symmetric tensors £2%,,,R% . (24 compo-

nents), F2, (6 components), and R[IW](: *Rﬁw}

pose. That all tensors can be reconstructed from these variables follows from the fact that

) (6 components) is more useful for our pur-

Ry, = _26al>]:bm7 Ry, = &, a )= RE. —EL . (B.21)

(mn

This means that the symmetric part of the Ricci tensors can be reconstructed from the
variables. Since the antisymmetric parts belong to the variables, so can the complete Ricci

tensors R}, Using now (B.1§) and definitions (B.17), (B:20), (B.12), we find

1 )

5(5;‘;m + Rn) — %(5“ +R%). (B.22)
It follows that the Weyl tensors and then, using again (B.1§), the Riemann tensors can be
reconstructed.

a
Emn_

In terms of the new parameterization, the equations of motion (B.9) read Rﬁw} =0
and
— 2e® Fyy = 87GTE,, (B.23)
1
572“ = 81GTy, (B.24)
1
R — Emm + Omn <5“ — 572“) = 8nG1T,,,. (B.25)
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Using these equations of motion, the Bianchi identities (|B.1(]) are equivalent to

1
O (eipmF ™ + RY) = FOR, (B.26)
260y Fom = O™ (EL,, + €mniF™) — 0, (B.27)
1 ) ) )
8()ng = §6ab [ekﬂaﬂ&il + eijlajé’bkl — 25%(9]'.7:; — O; Fpr — 8kfbi] <~

€0y (Rg’f - %5“%,)) = —%[eklmal5;i+eilmalggk+25ikajf;—aif“’f — 9" F*]. (B.28)

B.2 Canonical expressions

We will now express the Riemann tensor in terms of the canonical variables in such a
way that the covariant equations (B.23)—(B.2§) coincide with the Hamiltonian equations
deriving from ([2).

From the constraints with sources, we find

R® = 9MI"he,, — Ah® = —A2C°, (B.29)
Fo = %A@”Hfjm. (B.30)

Assuming A to be invertible, which we do in the rest of this appendix, R* and C?%, re-
spectively F% and 0"HZ, determine each other. By taking the divergence, the Bianchi
identity (IB.26)) implies that
1
OO Ry, = =5 AC.

Similarily, the Bianchi identity ([B.27) implies in particular that AE* — 9™mo"EL, =
€9 AI" 0" Hypp. When combined with (B:2§), the equations of motion following from
variation with respect to C* read

1
§A3C“ + € Adg(AHy — 0™ Hypp) + 20%0% = AE? — MO (RE, — E% ).
When combined with the previous relations, they imply that

£ = —%e“baoAHb + An®,
omongs  — —%e“baoA(AHb 2™ Hyp) + A2,

The rest of the Bianchi identities (B:2§), (B.27) are taken into account by applying a curl.
This gives €"*'0,0FR%, = SA(AIFHE — 9" 9™ O"HE,,) and €"*'0,0%ES. = €262 000 Fpi —
E?T@kf,? + AF%. Yet another curl gives 9,0™0" Ry, — AR, = %eklralAz(?”ng and
hOmo"E,, —AI"EL = 260y (0 0™ Fy— AFpi) +er1-0' AF" . Using the previous relations
we then get

1 1
OVRE = —gakﬁca — §ele8lA8"Hf{T’,

ané’gn = e“b60A< — %&gHb + ang]m> + O An® — %eklrﬁlAaan’“.
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The equations of motion following from variation with respect to A% are then identi-
cally satisfied.

Defining D%, = R%,, — £%,, and using definition (P.19) of P77 combined with ([B:27),
the equations of motion following from variation with respect to H%,,, read

+8mAAfL+8nAAl;n+%(%HA—aman)Cb —eapA(Dnb +0,nb ) —

mn

eardo [2 (PTTHb>
—2AZHE 4 S AP H® = —€pg 0P DY, — €pgOP DL, (B.31)

Taking into account definition (R.13) and previous relations, we can extract

~ AL (PTTDY) = %eabao {2 (PTTHb> — EmpgOnOPO" HY — €10, OPO" HYY +

+8mAAfL+8nAAl;n+%(&mA—@man)Cb —eapA (Ot + Bl ) —
~A?H + %5mnA2H“. (B.32)

In order to extract the remaining information from (B.31]), we first apply ™" A — ™9™
to get
€O AC? + 20™ " H gy, = 0, (B.33)

and then a divergence 0" giving
1
€0 (AAL — €,p,POF HY) = ey Anl + 200 HE — SOnAH" — 0,080 HY.  (B.34)

We can now inject the latter relations into (B-31) and use (R.14), (£.6) to get

DUl = — o AH,), — (PTTHY), (B.35)
Dgrm = - eabaoA |:Hbmn - %5mng:| - (PTTHa)mn — OmOpn—
1
- Z(émnA + 8man)ACa (B36)

Injecting into the second form of the last Bianchi identity (B.2§) and using previous
relations gives

1 1 1
bRy = — (ORa);; + APHLT + ZAaia’fHakj + ZAaja’fHaki — §aiajakalﬂakl
1 " a1
—5¢abo [eiqnamﬂj? + €jqndIAH™ + 5 (052 + aiaj)Acb} (B.37)

Identifying the terms with time derivatives gives

1 1
RY =3 [eiqnanH;" + " AH" + S (0,8 + aiaj)Aca}

% {aia’f i+ 0;,0°hi; — 0;0;h" — AhY; — €0 PO H — ejkla’fapaiﬂgl] (B.38)
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The terms without time derivatives in (B.37) then cancel identically. Together with (B.34)
this then finally gives

- 1 o 1 . ) 1 . )
£ = €O {wa = 50" Hb} +9'n, — 54’“@,@] OP Hoppy — §ejkl6k8’8pHalp
1 . 1 . . 1 . )
= —eawdo (#’w - 55%*’) + 0" ng — 5&“@@@?1{@@ — §eﬂklakazapHalp. (B.39)

B.3 Riemann tensor for linearized Taub-NUT

Following for instance [Bg] section A;.2 and using a regularization in Fourier space, we find
for the gravitational dyon at rest at the origin discussed in section [L.3,

a o | 167 n(r) 3x;x;
Rij =GM |:—3 (57,](53(.’1') + —7"3 <5z] — ) ]>:| , (B40)
a a 47 77(7") 3T,

where 7(r) is a regularizing function that suppresses the divergence at the origin and is 1
away from the origin. We then find

b0 = GM®4nd®(x), Ry = GM®4xd;;6%(x), (B.42)
a an($) 3xix;
Ef = GM 7(51-» -3 J), (B.43)

and all other components of R}, vanishing. For the Riemann tensor, this implies

a a Am "7(33) 3T; 2
4 n(z) 3wz
a _ ab l a 3
Oijk = —€" €k GM [351'15 (z) + 7(&'1 =3 )}, (B.45)

with all other components obtained through the on-shell symmetries of the Riemann tensor.
This is the usual Riemann tensor for the linearized Taub-NUT solution.
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